
T E C H N O L O G Y I N A C T I O N ™

IoT Projects with
Arduino Nano
33 BLE Sense

Step-By-Step Projects for
Beginners
—
Agus Kurniawan

IoT Projects with
Arduino Nano 33

BLE Sense
Step-By-Step Projects

for Beginners

Agus Kurniawan

IoT Projects with Arduino Nano 33 BLE Sense: Step-By-Step Projects for

Beginners

ISBN-13 (pbk): 978-1-4842-6457-7		 ISBN-13 (electronic): 978-1-4842-6458-4
https://doi.org/10.1007/978-1-4842-6458-4

Copyright © 2021 by Agus Kurniawan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY
Plaza, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6457-7.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Agus Kurniawan
Faculty of Computer Science, Universitas Indonesia, Depok, Indonesia

https://doi.org/10.1007/978-1-4842-6458-4

iii

About the Author���vii

About the Technical Reviewer��ix

Chapter 1: ��Setting up a Development Environment�������������������������������1

Introduction��2

Reviewing the Arduino Nano 33 BLE Sense Board���3

Setting up a Development Environment���4

Hello Arduino: Blinking LED��9

Using Arduino Web Editor���14

Registering an Arduino Account���15

Installing the Arduino Plug-in���16

Building an Arduino Program��18

Summary���19

Chapter 2: ��Arduino Nano 33 BLE Sense Board Development���������������21

Introduction��22

Basic Sketch Programming��22

Main Program���22

Declaring Variables���23

Operators��29

Conditional Statement��29

Looping���35

Break and Continue��39

Digital I/O���42

Table of Contents

iv

Analog I/O��45

Plotting an Analog Sensor��48

Serial Communication��52

Pulse-Width Modulation���53

Serial Peripheral Interface���58

Inter-Integrated Circuit���62

Scanning I2C Address���65

Reading Sensor-Based-I2C Addresses���69

Summary���74

Chapter 3: ��Sensor Programming���75

Introduction��76

Temperature and Relative Humidity���78

Plotting Sensor Data��81

Plotting Sensor Data Using an OLED I2C Display���83

Wiring for the OLED I2C Display���84

Checking the I2C Address of the OLED I2C Display��85

Setting Up the OLED I2C Display Library��86

Testing the OLED I2C Display��87

Displaying Temperature and Humidity Sensor��89

IMU Sensor���94

Pressure Sensor���97

Digital Microphone���100

Digital Proximity, Ambient Light, RGB, and Gesture Sensor��������������������������������102

Proximity Sensor��103

Color Sensor���105

Gesture Sensor���107

Summary���110

Table of Contents

v

Chapter 4: ��Bluetooth Low Energy��111

Introduction��111

Setting up Bluetooth Low Energy���112

Demo 1: Hello Arduino BLE���113

Writing Sketch Program���113

Testing Program���115

Demo 2: Controlling an LED with BLE��120

Writing Program���120

Testing Program���124

Demo 3: Sensor Real-Time Monitoring��128

Writing Program���129

Testing��132

Summary���136

Chapter 5: ��Embedded Artificial Intelligence��������������������������������������137

Introduction��137

Setting Up TensorFlow Lite��138

Demo: Embedded Artificial Intelligence���138

Gesture Classification��141

Gathering a Dataset��143

Building the Model���147

Developing a Classifier���154

Testing��155

Summary���156

��Index��157

Table of Contents

vii

About the Author

Agus Kurniawan is a lecturer, IT consultant, and author. He has 20 years

of experience in various software and hardware development projects,

delivering materials in training and workshops, and technical writing. He

has been awarded the Microsoft Most Valuable Professional (MVP) award

16 years in a row.

Agus is a lecturer and researcher in the field of networking and security

systems at the Faculty of Computer Science, Universitas Indonesia,

Indonesia. Currently, he is pursuing a PhD in computer science at the

Freie Universität Berlin, Germany. He can be reached on Twitter at

@agusk2010.

ix

About the Technical Reviewer

Sai Yamanoor is an embedded systems engineer working for an industrial

gases company in Buffalo, New York. His interests, deeply rooted in DIY

and open source hardware, include developing gadgets that aid behavior

modification. He has published two books with his brother and in his

spare time, he likes to contribute to building things that improve quality of

life. You can find his project portfolio at http://saiyamanoor.com.

http://saiyamanoor.com

1© Agus Kurniawan 2021
A. Kurniawan, IoT Projects with Arduino Nano 33 BLE Sense,
https://doi.org/10.1007/978-1-4842-6458-4_1

CHAPTER 1

Setting up a
Development
Environment
Arduino Nano 33 BLE Sense is an Internet of Things (IoT) solution

to perform sensing and actuating on a physical environment. The

Arduino Nano 33 BLE Sense board comes with a Bluetooth low energy

(BLE) module and some built-in sensors that enable us to build an IoT

application-based BLE network. This chapter explores how to set up the

Arduino Nano 33 BLE Sense board for development.

The following topics are covered in this chapter:

•	 Reviewing the Arduino Nano 33 BLE Sense board

•	 Setting up a development environment

•	 Building a blinking LED program

•	 Using Arduino web editor

https://doi.org/10.1007/978-1-4842-6458-4_1#DOI

2

�Introduction
Arduino Nano 33 BLE Sense is one of the IoT platforms from Arduino.

This board uses an nRF52840 module with some built-in sensors.

The nRF52840 module provides the BLE network stack that is used to

communicate with other devices. Bluetooth is a component of a wireless

personal area network (WPAN) that enables a devices to communicate

with other devices within a short distance.

The Arduino Nano 33 BLE Sense board is designed for low-cost IoT

devices to address your IoT problems. At 45 × 18 mm (length × width), the

Arduino Nano 33 BLE Sense is compact, as you can see in Figure 1-1.

Figure 1-1.  Arduino Nano 33 BLE Sense board

Chapter 1 Setting up a Development Environment

3

�Reviewing the Arduino Nano 33 BLE Sense
Board
Arduino Nano 33 BLE Sense is built from nRF52840. The board also

has a radio-module-based BLE. This module is designed for data

communication over Bluetooth. The detailed specifications of Arduino

Nano 33 BLE Sense are shown in Table 1-1.

Table 1-1.  Specifications of Arduino Nano 33 BLE Sense

Feature Notes

Microcontroller nRF52840

Secure module ATECC608A

Operating voltage 3.3V

Input voltage 21V

DC current per I/O pin (limit) 15 mA

Clock speed 64 Mhz

CPU flash memory 1 MB (bRF52840)

SRAM 256 KB

EEPROM None

Digital I/O 14

PWM pins All digital pins

UART 1

SPI 1

I2C 1

Analog input 8 (ADC 12-bit 200k sample)

(continued)

Chapter 1 Setting up a Development Environment

4

Because Arduino Nano 33 BLE Sense has some digital and analog

input/output (I/O), we extend the board’s capabilities by wiring with other

sensors or actuators. We also use UART, Serial Peripheral Interface (SPI),

and I2C protocols to communicate with other devices.

You can see in Table 1-1 that Arduino Nano 33 BLE Sense has some

internal sensor devices that you can use for your IoT solutions. We explore

these sensor devices further in Chapter 3.

Next, we set up Arduino Nano 33 BLE Sense on your computer so you

can build programs for the Arduino board.

�Setting up a Development Environment
Arduino provides software to build programs for all Arduino board models.

This software is available for Windows, Linux, and macOS, and it can be

downloaded from https://www.arduino.cc/en/Main/Software.

Table 1-1.  (continued)

Feature Notes

Analog output Only through PWM (no DAC)

LED_BUILTIN 13

USB Native in the nRF52840 processor

IMU LSM9DSI

Microphone MP34DT05

Gesture, light, proximity APDS9960

Barometric pressure LPS22HB

Temperature, humidity HTS221

Size (length × width) 45 mm × 18 mm

Chapter 1 Setting up a Development Environment

https://www.arduino.cc/en/Main/Software

5

The installation process is easy, following the installation guidelines

from Arduino setup. After installation is complete, you will see the Arduino

application menu on the main menu in your OS platform.

When you open the Arduino application, you will see the application

screen shown in Figure 1-2. Skeleton code is included in the application

dialog box. The following is a code template.

void setup() {

 // put your setup code here, to run once:

}

void loop() {

 // put your main code here, to run repeatedly:

}

Figure 1-2.  Arduino software for Windows

Chapter 1 Setting up a Development Environment

6

The Arduino program adopts C/C++ program language dialects. We

can put all data initialization in the setup() function. The program will

execute codes inside the loop() function continuously.

To work with the Arduino Nano 33 BLE Sense board, we need to

configure the Arduino software. First, add Arduino nRF528x Boards so

Arduino software will recognize the Arduino Nano 33 BLE Sense board.

On the Arduino menu bar, click Tools ➤ Board ➤ Boards Manager.

That will open the Boards Manager dialog box shown in Figure 1-3. In

the Type drop-down list, select All. Type Arduino&Nano&33&BLE in the

accompanying text box. You will see Arduino nRF528x Boards listed. Click

Install to install this package, after you have checked that your computer is

connected to the Internet.

Figure 1-3.  Adding supported boards for Arduino Nano 33 BLE Sense

Chapter 1 Setting up a Development Environment

7

This installation takes several minutes to complete. Once it is installed,

you can see the Arduino Nano 33 BLE Sense board on the targeted board.

You can verify it by selecting Tools ➤ Board ➤ Boards Manager in the

Arduino software to view your board list. Figure 1-4 shows the Arduino

Nano 33 BLE Sense board in the Arduino software.

Next, attach the Arduino Nano 33 BLE Sense board to the computer

via a micro USB cable. After it is attached, you can verify your board using

Device Manager for Windows. Figure 1-5 shows my Arduino Nano 33 BLE

Sense on Windows 10.

Figure 1-4.  A list of targeted boards for Arduino

Chapter 1 Setting up a Development Environment

8

If you are working on Linux, you can verify Arduino Nano 33 BLE Sense

using this terminal command:

$ ls /dev/ttyUSB*

You will see a list of attached devices over USB. Arduino Nano 33 BLE

Sense usually is detected as /dev/ttyUSB0 or /dev/ttyUSB1. For macOS,

you can type this command to check for Arduino Nano 33 BLE Sense:

$ ls /dev/cu*

You should see a USB device on your terminal.

Figure 1-5.  Detected Arduino Nano 33 BLE Sense board on Device
Manager in Windows 10

Chapter 1 Setting up a Development Environment

9

�Hello Arduino: Blinking LED
Now that you have connected Arduino Nano 33 BLE Sense to a computer,

you can start to write Arduino programs. The Arduino Nano 33 BLE Sense

board has a built-in LED that is attached on digital pin 13. In this section,

we build a simple blinking LED.

First, open the Arduino software and create a program from project

template. Click File ➤ Examples ➤ 01.Basics ➤ Blink. This will display the

sample program codes shown in Figure 1-6.

Figure 1-6.  Blink application on Arduino software

Chapter 1 Setting up a Development Environment

10

The program code is written as follows.

void setup() {

 // initialize digital pin LED_BUILTIN as an output.

 pinMode(LED_BUILTIN, OUTPUT);

}

// the loop function runs over and over again forever

void loop() {

 digitalWrite(LED_BUILTIN, HIGH); �// turn the LED on (HIGH

is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); �// turn the LED off by

making the voltage LOW

 delay(1000); // wait for a second

}

Save this program. The next step is to compile and upload the Arduino

program into Arduino Nano 33 BLE Sense. Click the Verify icon to compile

the Arduino program. To upload the Arduino program into the board, the

click Upload icon. Both of these icons are highlighted in Figure 1-7.

Chapter 1 Setting up a Development Environment

11

Before you upload a program, you can select Arduino Nano 33 BLE

Sense. Select Tools ➤ Board ➤ Arduino nRF528x Boards (Mbed OS) ➤

Arduino Nano 33 BLE, as shown in Figure 1-8. You also need to select the

Arduino port. To do so, select Tools ➤ Port and then select your COM port.

For instance, my Arduino Nano 33 BLE Sense port is COM4, as shown in

Figure 1-9.

Figure 1-7.  Compiling and flashing a program

Chapter 1 Setting up a Development Environment

12

Figure 1-9.  Selecting the port for an Arduino board

Figure 1-8.  Selecting the Arduino Nano 33 BLE Sense board

Chapter 1 Setting up a Development Environment

13

After uploading this Arduino program into Arduino Nano 33 BLE

Sense, we will see a blinking LED on the Arduino Nano 33 BLE Sense

board, as shown in Figure 1-10.

How does this work? The Arduino Nano 33 BLE Sense board has one

built-in LED on digital pin 13. In our program, we set digital pin 13 as the

digital output using pinMode(). We initialize this data on the setup()

function.

void setup() {

 // initialize digital pin LED_BUILTIN as an output.

 pinMode(LED_BUILTIN, OUTPUT);

}

The Arduino program defines LED_BUILTIN for a general built-in LED

pin. We can set the pin as the output mode by giving a value, OUTPUT.

Figure 1-10.  Blinking LED on Arduino Nano 33 BLE Sense board

Chapter 1 Setting up a Development Environment

14

Now our program will run continuously with the loop() function,

turning on LED and then turning off the LED. We can use digitalWrite()

to perform switch the LED on and off. Set the value to HIGH for turning

on the LED. Otherwise, we can turn off the LED by sending the value LOW

to the digitalWrite() function. We also set a delay of 1000 ms with the

delay() function.

void loop() {

 digitalWrite(LED_BUILTIN, HIGH); �// �turn the LED on (HIGH

is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(LED_BUILTIN, LOW); �// �turn the LED off by

making the voltage LOW

 delay(1000); // wait for a second

}

You can practice experimenting with these settings for the blinking

LED program.

�Using Arduino Web Editor
Arduino provides an online editor to build Arduino programs. The

advantage of this online editor is that you don’t need to prepare too many

runtimes and tools. You need only a browser and an Internet connection.

You can access the Arduino web editor using any browser by

navigating to https://create.arduino.cc/editor. Figure 1-11 shows

the Arduino web editor model. To use the Arduino web editor, we must

register with the Arduino portal to build Arduino programs.

Chapter 1 Setting up a Development Environment

https://create.arduino.cc/editor

15

In this section, we focus on getting started with the Arduino web editor

by preparing a browser and Internet access. We will perform these tasks to

complete our Arduino development with the online web editor:

•	 Register an Arduino portal account.

•	 Install the Arduino plug-in.

•	 Build a blink application for Arduino Nano 33 BLE

Sense.

�Registering an Arduino Account
To use and build Arduino programs with the Arduino web editor, we must

register an Arduino account. This account is similar to the account that is

used to buy an Arduino board on the Arduino store.

Figure 1-11.  Arduino web editor

Chapter 1 Setting up a Development Environment

16

You can start registering a new Arduino account by clicking the right-

top menu icon. You can then fill in the pertinent information to this portal.

After completing the account registration, we can build Arduino programs

with the Arduino web editor.

�Installing the Arduino Plug-in
To enable our Arduino Nano 33 BLE Sense to connect to the Arduino

web editor, we need to install the Arduino plug-in. This is required task

for Windows. The Arduino plug-in will act as a bridge between the local

Arduino Nano 33 BLE Sense board and the Arduino web editor.

First, open a browser and navigate to https://create.arduino.cc/

getting-started/plugin/welcome. That will result in the screen shown in

Figure 1-12.

Figure 1-12.  Arduino plug-in installation

Chapter 1 Setting up a Development Environment

https://create.arduino.cc/getting-started/plugin/welcome
https://create.arduino.cc/getting-started/plugin/welcome

17

Click Start. You will then see as the screen shown in Figure 1-13. Click

Download button to the download Arduino plug-in application.

After downloading the Arduino plug-in, you can install this

application. Follow the installation steps from the setup file. If the Arduino

plug-in installation is completed properly, the browser will detect the

Arduino plug-in.

Your web editor probably does not detect your Arduino Nano 33 BLE

Sense at this point. You can ignore this and continue to build Arduino

programs using the Arduino web editor. Next, we build a blink Arduino

application.

Figure 1-13.  Downloading the Arduino plug-in for Windows

Chapter 1 Setting up a Development Environment

18

�Building an Arduino Program
The Arduino web editor has the same functionalities as thedesktop version
of the Arduino software. The Arduino web editor has project samples, and
we can also add Arduino libraries into the project.

In this section, we build a blink Arduino application like the previous
project. Start by opening a browser and navigating to https://create.
arduino.cc/editor. Select Examples from the left menu, then click the
BUILTIN tab, and under 01.BASICS(6), select Blink. This is illustrated in
Figure 1-14.

After we select the Blink project sample, we have the blink program
shown in Figure 1-15. Now we can compile and upload the program into
Arduino Nano 33 BLE Sense.

Select your Arduino Nano 33 BLE Sense board on the device drop-
down list. Click the Verify icon and then the Upload icon to the left of the
drop-down list. This will compile and upload the Arduino program to the

targeted board.

Figure 1-14.  Creating a new project

Chapter 1 Setting up a Development Environment

https://create.arduino.cc/editor
https://create.arduino.cc/editor

19

You can try to build another Arduino project using the Arduino web

editor with project samples from this tool.

�Summary
You have learned to set up an Arduino development environment. You also

installed Arduino software on the desktop environment and built a simple

Arduino program, blink. In addition, you looked at using the Arduino web

editor to build Arduino programs.

Next, you will learn how to access Arduino Nano 33 BLE Sense I/O. We

use other communication protocols as well.

Figure 1-15.  Uploading a program into Arduino Nano 33 BLE Sense

Chapter 1 Setting up a Development Environment

21© Agus Kurniawan 2021
A. Kurniawan, IoT Projects with Arduino Nano 33 BLE Sense,
https://doi.org/10.1007/978-1-4842-6458-4_2

CHAPTER 2

Arduino Nano 33
BLE Sense Board
Development
This chapter focuses on how to build Arduino Nano 33 BLE Sense

programs using Arduino Sketch. This software is available for Windows,

macOS, and Linux. We also explore how to access I/O peripherals on

Arduino Nano 33 BLE Sense board with Arduino programs.

In this chapter, you will learn about the following topics:

•	 How to write Arduino programs using Sketch.

•	 How to access digital I/O.

•	 How to access analog I/O.

•	 How to plot analog sensor analog.

•	 How to build serial communication.

•	 How to access pulse-width modulation (PWM).

•	 How to access Serial Peripheral Interface (SPI).

•	 How to scan I2C an address.

•	 How to read sensor devices-based I2C.

https://doi.org/10.1007/978-1-4842-6458-4_2#DOI

22

�Introduction
We can say Arduino is a platform because Arduino as company provides

hardware and software. To build programs for Arduino Nano 33 BLE Sense

boards, we can use Arduino Sketch. This program uses C/C++ language

dialects.

This chapter covers how to build programs for Arduino Nano 33 BLE

Sense. The Arduino Nano 33 BLE Sense board uses a Bluetooth module to

connect to a network. Bluetooth is a part a WPAN that enables devices to

communicate with other devices within a short distance.

We use Arduino software to build Arduino programs. This tool uses the

Sketch program, which uses C++ dialects. Let’s turn our attention to Sketch

programming.

�Basic Sketch Programming
In this section, we learn about the Sketch programming language.

Technically, Sketch uses C++ dialects, so if you have experience using C++,

you can skip this section.

�Main Program
The Arduino program has a main program to perform tasks continuously.

When we create a program using Arduino software, we have skeleton

codes with two functions, setup() and loop(). The complete codes are

shown here.

void setup() {

 // put your setup code here, to run once:

}

Chapter 2 Arduino Nano 33 BLE Sense Board Development

23

void loop() {

 // put your main code here, to run repeatedly:

}

In this code you can see two functions, setup() and loop(). The

setup() function is called once when the Arduino board is to be turned on.

If we put codes in the setup() function, it means our codes will run once.

Otherwise, we have the loop() function, which is called continuously.

This is a basic structure of the main program from Arduino. In this

section, you learn about Sketch programming with the following topics.

•	 Declaring variables.

•	 Making conditional statements.

•	 Making looping.

•	 Working with break and continue.

�Declaring Variables
We can declare a variable using the following statement.

<data type> <variable name>;

<data type> is a keyword that Sketch adopts from C++. <data type>

represents how to define our data type on a variable. <variable name> is

the variable name we will call and use in our program. Table 2-1 provides a

list of <data type> values used in Sketch.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

24

Because the Sketch program adopts from C++, we put ; at the end of
the code line. Otherwise, we will get an error while compiling codes. For
instance, we declare variables with int and char data types as follows.

int a;
int b = 10;
char c;
char d = 'A';

We can set an initial value while declaring a variable. For instance, we
set int b = 10.

For this demonstration, we create a project for Arduino Nano 33 BLE
Sense. First, open the Arduino software and write these codes.

void setup() {
 int a = 10;
 int b = 5;

 // initialize serial communication
 Serial.begin(115200);
 while (!Serial) {
 ;
 }

 int c = a + b;
 int d = a * b;

Table 2-1.  Data Types in Sketch

array float Void

Bool int String()

Boolean long unsigned char

Byte short unsigned int

Char size_t unsigned long

Double string word

Chapter 2 Arduino Nano 33 BLE Sense Board Development

25

 // print
 Serial.print("C= ");
 Serial.println(c);

 Serial.print("d= ");
 Serial.println(d);
}
void loop() {
}

Figure 2-1 shows this code. To print messages, use the Serial.print()
and Serial.println() functions. We can print messages using Serial.
print() without a carriage return ("\r\n"). Otherwise, we can print

messages with a carriage return using Serial.println().

Figure 2-1.  Declaring variables

Chapter 2 Arduino Nano 33 BLE Sense Board Development

26

All printed messages with the Serial library will be shown on the serial

communication channel. Next, save this program, then compile and

upload it to the Arduino Nano 33 BLE Sense board.

To see the program output on the serial communication channel, use

the Serial Monitor tool from Arduino. To access it, select Tools ➤ Serial

Monitor, as shown in Figure 2-2.

After launching Serial Monitor, you can see your program output, as

shown in Figure 2-3. Select a baudrate of 115200 at the bottom of the Serial

Monitor console.

Figure 2-2.  Opening the Serial Monitor tool

Chapter 2 Arduino Nano 33 BLE Sense Board Development

27

If you don’t see the output message in the Serial Monitor console, you

can press the Reset button on the Arduino Nano 33 BLE Sense board. You can

find this button next to the micro USB connector, as shown in Figure 2-4.

Figure 2-3.  Program output on Serial Monitor

Figure 2-4.  Position of the Reset button on the Arduino Nano 33 BLE
Sense board

Chapter 2 Arduino Nano 33 BLE Sense Board Development

28

How does this work? This program only runs with the setup()

function. We declare two variables, a and b. Then, we assign their values.

void setup() {
 int a = 10;
 int b = 5;

Next, activate the Serial object to perform serial communication. Set
the baud rate to 115200. Use while for looping to wait for the Serial object
to be created successfully.

// initialize serial communication
 Serial.begin(115200);
 while (!Serial) {
 ;
 }

We perform simple mathematical operations such as addition and
multiplication. The result of operations is stored in the c and d variables.

 int c = a + b;
 int d = a * b;

Print the result to the serial terminal using the Serial object.

 // print
 Serial.print("C= ");
 Serial.println(c);

 Serial.print("d= ");
 Serial.println(d);

For the loop() function, do nothing. All code runs on the setup()
function. That’s why you probably don’t see program output; we will see it
later.

void loop() {

}

Chapter 2 Arduino Nano 33 BLE Sense Board Development

29

�Operators
Sketch uses C++ operators. Arithmetic operators are declared to perform

mathematical operations. We can use the following arithmetic operators:

•	 % (remainder)

•	 * (multiplication)

•	 + (addition)

•	 - (subtraction)

•	 / (division)

•	 = (assignment operator)

For Boolean operators, we implement && for logical and, || for logical

or, and ! for logical not.

�Conditional Statement
We can perform action-based conditionals. For instance, you might want

to turn on a lamp if a light sensor obtains a low intensity value. In Sketch,

you can implement conditional statements using if and switch syntax. A

conditional statement with if can be declared as follows.

if(<conditional>) {

// do something

} else {

// do something

}

We can put conditional values in <conditional>, such as applying

Boolean and arithmetic operators. For this demo, we can create a Sketch

program on Arduino Nano 33 BLE Sense. You can write this complete

program.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

30

long num_a;

long num_b;

void setup() {

 // initialize serial communication

 Serial.begin(115200);

 while (!Serial) {

 ;

 }

}

void loop() {

 num_a = random(100);

 num_b = random(100);

 // print

 Serial.print("num_a: ");

 Serial.print(num_a);

 Serial.print(", num_b: ");

 Serial.println(num_b);

 if(num_a > num_b) {

 Serial.println("num_a > num_b");

 }else {

 Serial.println("num_a <= num_b");

 }

 delay(2000);

}

Save this program as Conditional. Now you can compile and upload

this program into the Arduino Nano 33 BLE Sense board. Open Serial

Monitor to view the program output, shown in Figure 2-5.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

31

How does this work? This program generates random values for num_a

and num_b variables in the loop() function.

void loop() {

 num_a = random(100);

 num_b = random(100);

Next, print these random values on the serial terminal using the

Serial object. We can call the Serial.print() and Serial.println()

functions.

 // print

 Serial.print("num_a: ");

 Serial.print(num_a);

 Serial.print(", num_b: ");

 Serial.println(num_b);

Figure 2-5.  Program output for conditional if program

Chapter 2 Arduino Nano 33 BLE Sense Board Development

32

Finally, we evaluate a value on num_a and num_b using a conditional-if

statement. We check if the num_a value is greater than num_b or not. Then,

we print the result on the serial terminal.

 if(num_a > num_b) {

 Serial.println("num_a > num_b");

 }else {

 Serial.println("num_a <= num_b");

 }

The next demonstration is to implement a conditional with a switch

statement. In general, we can declare a switch statement as follows.

switch(value) {

 case val1: <code>

 break;

 case val2: <code>

 break;

 case val3: <code>

 break;

}

For this example, build a program to evaluate the num_a value with

a switch statement. Set a random value with a maximum of 5. Open the

Arduino software and write this complete program.

long num_a;

void setup() {

 // initialize serial communication

 Serial.begin(115200);

 while (!Serial) {

 ;

 }

}

Chapter 2 Arduino Nano 33 BLE Sense Board Development

33

void loop() {

 num_a = random(5);

 // print

 Serial.print("num_a: ");

 Serial.println(num_a);

 switch(num_a) {

 case 0:

 Serial.println("num_a value is 0");

 break;

 case 1:

 Serial.println("num_a value is 1");

 break;

 case 2:

 Serial.println("num_a value is 2");

 break;

 case 3:

 Serial.println("num_a value is 3");

 break;

 case 4:

 Serial.println("num_a value is 4");

 break;

 }

 delay(2000);

}

Save this program as ConditionalSwitch. You can compile and upload

this program into the Arduino Nano 33 BLE Sense board. To see the

program output, you can open Serial Monitor, as displayed in Figure 2-6.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

34

How does this work? This program starts to generate random values in

the loop() function. The result is stored in the num_a variable. Then, you

can print this value to the serial terminal.

void loop() {

 num_a = random(5);

 // print

 Serial.print("num_a: ");

 Serial.println(num_a);

Next, evaluate the num_a variable using a switch statement. We check

num_a for values 0, 1, 2, 3, and 4. We print the message on each switch-case

statement.

switch(num_a) {

 case 0:

 Serial.println("num_a value is 0");

 break;

Figure 2-6.  Program output for Switch program

Chapter 2 Arduino Nano 33 BLE Sense Board Development

35

 case 1:

 Serial.println("num_a value is 1");

 break;

 case 2:

 Serial.println("num_a value is 2");

 break;

 case 3:

 Serial.println("num_a value is 3");

 break;

 case 4:

 Serial.println("num_a value is 4");

 break;

 }

You have now learned conditional statements with if and switch. You

can use a switch statement if the number of options id fewer than five;

otherwise, you can use an if statement with operators.

�Looping
A looping task is useful when you perform the same task continuously. In

Sketch, you can implement looping tasks using for, while, and do..while

statements. Declare a for statement as follows.

for(start;conditional;increment/decrement) {

 <codes>

}

For a while statement, you can implement it as follows.

while(selection) {

 <codes>

}

Chapter 2 Arduino Nano 33 BLE Sense Board Development

36

You also can use do..while for looping. You can run the first code step,

then select on the while statement.

do {

 <codes>

} while(selection);

Now you can build a Sketch program to implement looping using for,

while, and do..while statements. Write this complete program using the

Arduino software.

void setup() {

 // initialize serial communication

 Serial.begin(115200);

 while (!Serial) {

 ;

 }

}

void loop() {

 long val = random(15);

 int i;

 // print

 Serial.print("val: ");

 Serial.println(val);

 // looping

 Serial.println("Looping: for");

 for(i=0;i<val;i++){

 Serial.print(i);

 Serial.print(" ");

 }

 Serial.println();

Chapter 2 Arduino Nano 33 BLE Sense Board Development

37

 Serial.println("Looping: while");

 int start = 0;

 while(start < val) {

 Serial.print(start);

 Serial.print(" ");

 start++;

 }

 Serial.println();

 Serial.println("Looping: do..while");

 start = 0;

 do {

 Serial.print(start);

 Serial.print(" ");

 start++;

 }while(start < val);

 Serial.println();

 delay(3000);

}

You can save this program as Looping, then compile and upload it into

the Arduino Nano 33 BLE Sense board. You can then open Serial Monitor

to see the program output, as shown in Figure 2-7.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

38

How does this work? Set a random value for your looping program.

void loop() {
 long val = random(15);
 int i;

Next, print this random value to the serial terminal.

 // print
 Serial.print("val: ");
 Serial.println(val);

For looping with a for statement, perform a loop starting with i=0 until
val value.

 Serial.println("Looping: for");
 for(i=0;i<val;i++){
 Serial.print(i);
 Serial.print(" ");
 }
 Serial.println();

Figure 2-7.  Program output for looping

Chapter 2 Arduino Nano 33 BLE Sense Board Development

39

For the while statement, perform a similar task to the one for a for

statement. Set start = 0 for initialization.

 int start = 0;

 while(start < val) {

 Serial.print(start);

 Serial.print(" ");

 start++;

 }

 Serial.println();

Finally, implement the do..while statement. Set start=0 again, and

then perform the looping task.

start = 0;

 do {

 Serial.print(start);

 Serial.print(" ");

 start++;

 }while(start < val);

 Serial.println();

�Break and Continue
When you perform looping, you will likely want to exit the loop or skip

a certain step from the loop. In Sketch, you can use break and continue

statements.

For this example, we create a Sketch program to perform looping from

0 to a random value. When the looping iteration reaches 5, we skip this

step using a continue statement. Then, we exit the loop when we reach an

iteration value more than 10 using a break statement.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

40

First, open the Arduino software. Write this complete program for

break and continue implementation.

void setup() {

 // initialize serial communication

 Serial.begin(115200);

 while (!Serial) {

 ;

 }

}

void loop() {

 long val = random(6, 15);

 int i;

 // print

 Serial.print("val: ");

 Serial.println(val);

 // looping

 Serial.println("Looping: for");

 for(i=0;i<val;i++){

 if(i==5)

 continue;

 if(i>10)

 break;

 Serial.print(i);

 Serial.print(" ");

 }

 Serial.println();

 delay(3000);

}

Chapter 2 Arduino Nano 33 BLE Sense Board Development

41

Save this program as BreakContinue, then compile and upload this

program into the Arduino Nano 33 BLE Sense board. After uploading the

program, you can view the program output using Serial Monitor, as shown

in Figure 2-8.

How does this work? Set a random value in the loop() function. Print

this random value to the serial terminal using the Serial object.

void loop() {

 long val = random(6, 15);

 int i;

 // print

 Serial.print("val: ");

 Serial.println(val);

Figure 2-8.  Applying break and continue in Sketch

Chapter 2 Arduino Nano 33 BLE Sense Board Development

42

Perform looping from 0 to a random value, val. When you have

an iteration = 5, skip this iteration using a continue statement. Then,

when you have an iteration > 10, exit from looping by calling the break

statement.

// looping

 Serial.println("Looping: for");

 for(i=0;i<val;i++){

 if(i==5)

 continue;

 if(i>10)

 break;

 Serial.print(i);

 Serial.print(" ");

 }

 Serial.println();

This is the end of our basic Sketch program. Next, we write an Arduino

program with various cases.

�Digital I/O
Arduino Nano 33 BLE Sense has digital input/output on 14 pins. You can

attach sensors and actuators in digital I/O pins. The Arduino Nano 33

BLE Sense pin layout is displayed on the back of the board, as shown in

Figure 2-9. Digital I/O pins are defined as Dx where x is a digital number;

for instance, D1 is digital I/O on pin 1.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

43

You can check the details of the pinout of the Arduino Nano 33 BLE

Sense board on the official Arduino website at https://content.arduino.

cc/assets/Pinout-NANOsense_latest.pdf.

To implement a demo for digital I/O on Arduino Nano 33 BLE Sense,

we need a LED and a push button. For this examples, use the internal

LED (built-in LED) on digital pin 13. We also need a push button that is

connected to digital pin 7. Figure 2-10 shows the wiring for this project.

Figure 2-10.  A wiring configuration for a push button project

Figure 2-9.  Arduino Nano 33 BLE Sense board pinout

Chapter 2 Arduino Nano 33 BLE Sense Board Development

https://content.arduino.cc/assets/Pinout-NANOsense_latest.pdf
https://content.arduino.cc/assets/Pinout-NANOsense_latest.pdf

44

Now you can create the Arduino program. This program will turn on

an LED when the user presses a push button. The program algorithm is to
read a push button state using the digitalRead() function. To turn on the
LED, we can use digitalWrite() and set a HIGH value.

Open the Arduino softwareand write this complete program.

int led = 13;
int pushButton = 7;
int state = 0;

void setup() {
 pinMode(led, OUTPUT);
 pinMode(pushButton, INPUT);
}
void loop() {
 state = digitalRead(pushButton);
 digitalWrite(led,state);
 delay(300);
}

Save this program as ButtonLed, then compile and upload this
program to the Arduino Nano 33 BLE Sense board. Once it is uploaded,
you can test it by pressing a push button. You should see LED light up on
the Arduino Nano 33 BLE Sense.

How does this work? This program starts by initializing values for the
LED and push button pins.

int led = 13;
int pushButton = 7;
int state = 0;

void setup() {
 pinMode(led, OUTPUT);
 pinMode(pushButton, INPUT);

}

Chapter 2 Arduino Nano 33 BLE Sense Board Development

45

Then, in the loop() function, we read a push button state using

the digitalRead() function. The state value will be passed to the

digitalWrite() function to turn the LED on and off.

void loop() {

 state = digitalRead(pushButton);

 digitalWrite(led,state);

 delay(300);

}

Now that you’ve learned about digital I/O, next we look at analog I/O.

�Analog I/O
Arduino Nano 33 BLE Sense provides analog I/O to enable us to create

interactions with sensor and actuator devices. Analog I/O pins are labeled

Ax where x is the analog pin number. You can see these labels on the back

of the Arduino Nano 33 BLE Sense board as shown previously in Figure 2-9.

Arduino Nano 33 BLE Sense has eight analog inputs (ADC).

Unfortunately, Arduino Nano 33 BLE Sense does not support analog

output (DAC), but we can use PWM as analog output. For ADC modeling,

Arduino Nano 33 BLE Sense provides ADC resolution with 12 bits.

This demonstration uses an analog temperature sensor, TMP36. You

can also use the TMP36 module like a thermal module from Linksprite

(see https://www.linksprite.com/wiki/index.php?title=Thermal_

Module). You can perform the wiring shown in Figure 2-11 as follows:

•	 TMP36 module VCC is connected to Arduino 3.3.V.

•	 TMP36 module GND is connected to Arduino GND.

•	 TMP36 module SIG is connected to Arduino analog A0.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

https://www.linksprite.com/wiki/index.php?title=Thermal_Module
https://www.linksprite.com/wiki/index.php?title=Thermal_Module

46

Now you can write an Arduino program to the analog sensor from

the TMP36 module. It will read sensor data and then show it on the serial

terminal. Begin by opening the Arduino software and writing this complete

program.

void setup() {

 Serial.begin(115200);

 while (!Serial) {

 ;

 }

}

Figure 2-11.  Wiring for analog sensor and Arduino Nano 33 BLE
Sense

Chapter 2 Arduino Nano 33 BLE Sense Board Development

47

void loop() {

 int reading = analogRead(A0);

 float voltage = reading * 3.3;

 voltage /= 1024.0;

 Serial.print(voltage); Serial.println(" volts");

 float tempC = (voltage - 0.5) * 100 ;

 Serial.print(tempC);

 Serial.println(" degrees C");

 delay(3000);

}

Save this program as AnalogSensor. Next, compile and upload this

program into the Arduino Nano 33 BLE Sense. Open Serial Monitor to view

the program output, which is shown in Figure 2-12.

How does this work? First, read the sensor data on analog pin A0.

Figure 2-12.  Program output for reading temperature

Chapter 2 Arduino Nano 33 BLE Sense Board Development

48

void loop() {

 int reading = analogRead(A0);

Next, calculate a voltage and show it on the serial terminal. Because we

are using a voltage reference of 3.3V, we can calculate using this formula.

 float voltage = reading * 3.3;

 voltage /= 1024.0;

 Serial.print(voltage); Serial.println(" volts");

Next, compute a temperature using the following formula-based

datasheet from the TMP36 module.

 float tempC = (voltage - 0.5) * 100 ;

 Serial.print(tempC);

 Serial.println(" degrees C");

The result is be printed to the serial terminal.

�Plotting an Analog Sensor
You also can plot analog input on a plotter tool that is available in the

Arduino software. This example uses a SparkFun Electret Microphone

Breakout as the analog source. You can find this module at https://www.

sparkfun.com/products/12758.

Connect the SparkFun Electret Microphone Breakout to Arduino Nano

33 BLE Sense board using the following wiring. The resulting configuration

is shown in Figure 2-13.

•	 SparkFun Electret Microphone Breakout module VCC

is connected to Arduino 3.3.V.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

https://www.sparkfun.com/products/12758
https://www.sparkfun.com/products/12758

49

•	 SparkFun Electret Microphone Breakout module GND

is connected to Arduino GND.

•	 SparkFun Electret Microphone Breakout module SIG is

connected to Arduino A0.

Next, you can write an Arduino program to plot sensor data. Open the

Arduino software and write this complete program.

void setup() {

 Serial.begin(115200);

 while (!Serial) {

 ;

 }

}

Figure 2-13.  Arduino wiring with SparkFun Electret Microphone
Breakout

Chapter 2 Arduino Nano 33 BLE Sense Board Development

50

void loop() {

 int val = analogRead(A0);

 Serial.println(val);

 delay(300);

}

Save this program as AnalogPlotting, then compile and upload this

program into the Arduino Nano 33 BLE Sense. To open the Serial Plotter

tool in the Arduino software, on the Tools menu, select Serial Plotter, as

shown in Figure 2-14.

After you select Serial Plotter, you will see the dialog box shown in

Figure 2-15. Make noise into the SparkFun Electret Microphone Breakout

to obtain various signals on the plotter tool. Because we use delay(300),

the plotter updates its graphs every 300 ms.

Figure 2-14.  Opening the Serial Plotter tool

Chapter 2 Arduino Nano 33 BLE Sense Board Development

51

How does this work? It is very simple. First, read an analog sensor by

calling analogRead().

void loop() {

 int val = analogRead(A0);

Then, print to the serial terminal using println() from the Serial

object.

 Serial.println(val);

 delay(300);

This prompts Serial Plotter to display a graph.

Figure 2-15.  Plotting sensor sound data

Chapter 2 Arduino Nano 33 BLE Sense Board Development

52

�Serial Communication
Serial communication is the process of sending data one bit at a time,
sequentially, over a communication channel. In Arduino Nano 33 BLE
Sense, we can implement serial communication using the Serial object.
We already used this Serial object in previous projects to show program
output using Serial Monitor.

You can write data into serial communication by calling print() and
println() from the Serial object. For further information about the
Serial object, visit https://www.arduino.cc/reference/en/language/
functions/communication/serial/.

This demonstration builds a blink program. Each LED state is written
into the serial terminal. Use a baud rate setting of 115200. You can open
the Arduino software and write this complete program.

int led = 13;

void setup() {
 Serial.begin(115200);
 pinMode(led, OUTPUT);
}

void loop() {
 Serial.println("LED: HIGH");
 digitalWrite(led, HIGH);
 delay(1000);
 Serial.println("LED: LOW");
 digitalWrite(led, LOW);
 delay(1000);
}

Save this program as SerialDemo, then compile and upload this
program into the Arduino Nano 33 BLE Sense. Open Serial Monitor to view

the program output, as displayed in Figure 2-16.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/communication/serial/

53

�Pulse-Width Modulation
PWM is a method to control analog output. Technically, it is not “true”

analog output. Microcontroller Unit (MCU) can manipulate the duty

cycle to generate pulses. Arduino Nano 33 BLE Sense has PWM pins on

all digital pins. You can see a ~ sign the on digital pins that are PWM pins.

Refer to Figure 2-9, which shows digital pins, such as D2~. In general,

Arduino Nano 33 BLE Sense has 14 PWM pins on digital pins: 0, 1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11, 12, 13.

For this demonstration, we use an RGB LED. This LED has four pins.

Three pins are the red, green, and blue pins. The rest could be GND or

VCC, depending on the RGB cathode or anode model. You can implement

the following wiring for this example, which is shown in Figure 2-17.

•	 RGB red pin is connected to Arduino digital pin 12.

•	 RGB green pin is connected to Arduino digital pin 11.

•	 RGB blue pin is connected to Arduino digital pin 10.

•	 RGB GND pin is connected to Arduino digital pin GND.

Figure 2-16.  Program output for SerialDemo program

Chapter 2 Arduino Nano 33 BLE Sense Board Development

54

Now you can create an Arduino program to generate some colors with

the RGB LED: red, green, blue, yellow, purple, and aqua. Open the Arduino

software and write this complete program.

int redPin = 12;

int greenPin = 11;

int bluePin = 10;

void setup()

{

 pinMode(redPin, OUTPUT);

 pinMode(greenPin, OUTPUT);

 pinMode(bluePin, OUTPUT);

 Serial.begin(115200);

}

void loop()

{

 setColor(255, 0, 0); // red

 Serial.println("red");

Figure 2-17.  Wiring for Arduino and RGB LED

Chapter 2 Arduino Nano 33 BLE Sense Board Development

55

 delay(1000);

 setColor(0, 255, 0); // green

 Serial.println("green");

 delay(1000);

 setColor(0, 0, 255); // blue

 Serial.println("blue");

 delay(1000);

 setColor(255, 255, 0); // yellow

 Serial.println("yellow");

 delay(1000);

 setColor(80, 0, 80); // purple

 Serial.println("purple");

 delay(1000);

 setColor(0, 255, 255); // aqua

 Serial.println("aqua");

 delay(1000);

}

void setColor(int red, int green, int blue)

{

 analogWrite(redPin, red);

 analogWrite(greenPin, green);

 analogWrite(bluePin, blue);

}

Save this program as test_rgb_arduino, then compile and upload this

program into the Arduino Nano 33 BLE Sense. You should see some colors

on the RGB LED. You also can open Serial Monitor to see the program

output, which is also displayed in Figure 2-18.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

56

How does this work? Initialize the digital pins for PWM pins. Call

pinMode() with OUTPUT mode. You also also configure the Serial object

with a baud rate value of 115200.

int redPin = 12;

int greenPin = 11;

int bluePin = 10;

void setup()

{

 pinMode(redPin, OUTPUT);

 pinMode(greenPin, OUTPUT);

 pinMode(bluePin, OUTPUT);

 Serial.begin(115200);

}

Next, define the setColor() function to generate a color from

combining red, green, and blue color values. Call analogWrite() to write

data for PWM data.

Figure 2-18.  Program output for RGB application

Chapter 2 Arduino Nano 33 BLE Sense Board Development

57

void setColor(int red, int green, int blue)
{
 analogWrite(redPin, red);
 analogWrite(greenPin, green);
 analogWrite(bluePin, blue);
}

Next, generate some colors on the loop() function. For instance, we
want to set Red = 255, Green = 0, and Blue = 0. These samples generate
color for red, green, and blue.

void loop()
{
 setColor(255, 0, 0); // red
 Serial.println("red");
 delay(1000);
 setColor(0, 255, 0); // green
 Serial.println("green");
 delay(1000);
 setColor(0, 0, 255); // blue
 Serial.println("blue");
 delay(1000);

You can also generate colors for yellow, purple, and aqua by inserting
values for red, green, and blue.

 setColor(255, 255, 0); // yellow
 Serial.println("yellow");
 delay(1000);
 setColor(80, 0, 80); // purple
 Serial.println("purple");
 delay(1000);
 setColor(0, 255, 255); // aqua
 Serial.println("aqua");

 delay(1000);

Chapter 2 Arduino Nano 33 BLE Sense Board Development

58

You can practice generating new colors by combining different values

for red, green, and blue. Values can be set from 0 to 255.

�Serial Peripheral Interface
Serial communication works with asynchronous mode so there is no

control on serial communication. This means we cannot guarantee

the data that are sent will be received by the intended receiver. SPI is a

synchronous serial communication interface specification, but SPI has

four wires to control data such as MOSI, MISO, SCLK, and SS.

Arduino Nano 33 BLE Sense has one SPI interface with the following

SPI pins.

•	 MOSI on digital pin 11.

•	 MISO on digital pin 12.

•	 SCLK on digital pin 13.

You can attach any sensor or actuator-based SPI interface to the

Arduino Nano 33 BLE Sense board. For this example, we only connect the

MISO pin to the MOSI pin using a jumper cable. You can connect digital

pin 12 to digital pin 11. Figure 2-19 shows the wiring for this SPI demo.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

59

To access the SPI interface on Arduino Nano 33 BLE Sense, you can

use the SPI library. Detailed information about this library is available at

https://www.arduino.cc/en/Reference/SPI.

Now we can build an Arduino program. This program will send data to

and receive data from SPI. To begin, open the Arduino software and then

write this complete program.

#include <SPI.h>

byte sendData,recvData;

void setup() {

 SPI.begin();

Figure 2-19.  Connecting MISO and MOSI pins from Arduino SPI

Chapter 2 Arduino Nano 33 BLE Sense Board Development

https://www.arduino.cc/en/Reference/SPI

60

 Serial.begin(9600);

 randomSeed(80);

}

void loop() {

 sendData = random(50, 100);

 recvData = SPI.transfer(sendData);

 Serial.print("Send=");

 Serial.println(sendData,DEC);

 Serial.print("Recv=");

 Serial.println(recvData,DEC);

 delay(800);

}

Save this program as SPIDemo, then compile and upload this program

into the Arduino Nano 33 BLE Sense. You can open Serial Monitor to see

the program output, which is also shown in Figure 2-20.

Figure 2-20.  Program output for SPI program

Chapter 2 Arduino Nano 33 BLE Sense Board Development

61

How does this work? First, initialize SPI and the Serial interface on

setup() function.

#include <SPI.h>

byte sendData,recvData;

void setup() {

 SPI.begin();

 Serial.begin(9600);

 randomSeed(80);

}

To send and receive data over SPI, you can use the SPI.transfer()

function. You can send data with random values in the loop() function.

void loop() {

 sendData = random(50, 100);

 recvData = SPI.transfer(sendData);

Next, print the sent and received data on the serial terminal.

 Serial.print("Send=");

 Serial.println(sendData,DEC);

 Serial.print("Recv=");

 Serial.println(recvData,DEC);

That complete the SPI demo. You can practice further by applying

sensor and actuator devices.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

62

�Inter-Integrated Circuit
The Inter-Integrated Circuit (I2C) protocol is a protocol intended to allow

multiple “slave” modules or devices (chips) to communicate with one or

more “master” chips. This protocol works with asynchronous mode. To

communicate with other devices or modules, the I2C protocol defines I2C

addresses for all slave devices.

The I2C interface has two pins: SDA and SCL. For data transfer, the I2C

interface uses the SDA pin. The SCL pin is used for clocking. The Arduino

Nano 33 BLE Sense board has I2C pins on A4 as SDA and A5 as SCL.

For this example, we use a sensor-module-based I2C interface. The

I2C interface uses a device address so the Arduino Nano 33 BLE Sense

board can access data by opening a connection to the I2C address. Each

analog sensor from the sensor-module-based I2C will be attached to an

I2C address.

For testing in this example, an PCF8591 AD/DA Converter module with

sensor and actuator devices is used, as shown in Figure 2-21. The PCF8591

AD/DA module uses a PCF8591 chip that consists of four analog inputs

and an AD converter. The PCF8591 chip also has analog output with a DA

converter. For further information about the PCF8591 chip, see https://

www.nxp.com/products/interfaces/ic-spi-serial-interface-

devices/ic-dacs-and-adcs/8-bit-a-d-and-d-a-converter:PCF8591.

This type of module can be purchased online or at your local store.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

https://www.nxp.com/products/interfaces/ic-spi-serial-interface-devices/ic-dacs-and-adcs/8-bit-a-d-and-d-a-converter:PCF8591
https://www.nxp.com/products/interfaces/ic-spi-serial-interface-devices/ic-dacs-and-adcs/8-bit-a-d-and-d-a-converter:PCF8591
https://www.nxp.com/products/interfaces/ic-spi-serial-interface-devices/ic-dacs-and-adcs/8-bit-a-d-and-d-a-converter:PCF8591

63

Based on the documentation for the PCF8591 AD/DA Converter

module, this module uses an I2C address on 0x48. The PCF8591 AD/DA

Converter module also consists of three sensors.

•	 Thermistor: Using channel 0.

•	 Photoresistor: Using channel 1.

•	 Potentiometer: Using channel 3.

Now Attaching PCF8591 AD/DA Converter module to Arduino Nano

33 BLE Sense board with the following wiring.

•	 PCF8591 AD/DA module SDA is connected to Arduino

A4 pin.

•	 PCF8591 AD/DA module SCL is connected to Arduino

A5 pin.

•	 PCF8591 AD/DA module VCC is connected to Arduino

3.3V.

•	 PCF8591 AD/DA module GND is connected to Arduino

GND pin.

Figure 2-21.  PCF8591 ADC DAC AD/DA module

Chapter 2 Arduino Nano 33 BLE Sense Board Development

64

Figure 2-22 shows wiring for the PCF8591 AD/DA Converter module

and Arduino Nano 33 BLE Sense board. You should see a lighted LED

when you plug in 3.3V to the module.

Now that we have finished our wiring for this demonstration, we can

implement two project demos: an I2C scanning application and an I2C

sensor application. First, let’s build a scanning I2C address application on

the Arduino Nano 33 BLE Sense board.

Figure 2-22.  Wiring PCF8591 ADC DAC AD/DA module with
Arduino Nano 33 BLE Sense

Chapter 2 Arduino Nano 33 BLE Sense Board Development

65

�Scanning I2C Address
Every device or module-based-I2C set has its own I2C address on MCU. In

this section, we want to scan all devices that are attached on the Arduino

Nano 33 BLE Sense. We also have some internal sensor devices based on

I2C inside the Arduino Nano 33 BLE Sense.

To access I2C on the Arduino board, you can use Wire library. We can

include our program by inserting the wire.h library. For more information

about the Wire library, consult the official Arduino website at https://

www.arduino.cc/en/Reference/Wire.

This demo uses the wiring demo from the PCF8591 AD/DA Converter

module shown previously in Figure 2-22. This program was modified from

https://playground.arduino.cc/Main/I2cScanner/. Open the Arduino

software and write this complete program.

#include <Wire.h>

void setup() {

 Serial.begin(115200);

 Wire.begin();

 Serial.println("\nI2C Scanner");

}

void loop() {

 byte error, address;

 int nDevices;

 Serial.println("Scanning...");

 nDevices = 0;

 for(address = 1; address < 127; address++) {

 Wire.beginTransmission(address);

 error = Wire.endTransmission();

Chapter 2 Arduino Nano 33 BLE Sense Board Development

https://www.arduino.cc/en/Reference/Wire
https://www.arduino.cc/en/Reference/Wire
https://playground.arduino.cc/Main/I2cScanner/

66

 if (error == 0) {

 Serial.print("I2C device found at address 0x");

 if (address < 16)

 Serial.print("0");

 Serial.println(address, HEX);

 nDevices++;

 }

 else if (error == 4) {

 Serial.print("Unknown error at address 0x");

 if (address < 16)

 Serial.print("0");

 Serial.println(address, HEX);

 }

 }

 if (nDevices == 0)

 Serial.println("No I2C devices found");

 else

 Serial.println("done");

 delay(5000);

}

Save this program as i2c_scanner. You can then compile and upload

this program into the Arduino Nano 33 BLE Sense. You can view the

program output using Serial Monitor, as displayed in Figure 2-23. You

can see that there are three I2C addresses. 0x48 is our PCF8591 AD/DA

Converter module, and two I2C addresses, 0x51 and 0x55, are internal I2C

sensors inside the Arduino Nano 33 BLE Sense.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

67

How does this work? First, initialize the I2C and serial interfaces in the

setup() function. Set the baud rate serial value to 115200.

#include <Wire.h>

void setup() {

 Serial.begin(115200);

 Wire.begin();

 Serial.println("\nI2C Scanner");

}

In the loop() function, we perform a scan for the I2C address by

probing I2C data. Set initialize nDevices = 0 for the number of I2C devices

to find. Perform a looping task from address 0 to 127.

Next, open the I2C interface using Wire.beginTransmission(), then

close a transmission by calling wire.endTransmission().

Figure 2-23.  Program output for reading I2C address

Chapter 2 Arduino Nano 33 BLE Sense Board Development

68

nDevices = 0;

 for(address = 1; address < 127; address++) {

 Wire.beginTransmission(address);

 error = Wire.endTransmission();

Check for value error. If there is no error, it means you have an I2C

device on the current address. Print the I2C address to the serial terminal

using Serial.println() with HEX mode.

 if (error == 0) {

 Serial.print("I2C device found at address 0x");

 if (address < 16)

 Serial.print("0");

 Serial.println(address, HEX);

 nDevices++;

 }

Otherwise, check the error code. If error = 4, we print errors on this

address for unknown errors on the current address.

 else if (error == 4) {

 Serial.print("Unknown error at address 0x");

 if (address < 16)

 Serial.print("0");

 Serial.println(address, HEX);

 }

Finally, print the findings on the I2C interface on the serial terminal.

 if (nDevices == 0)

 Serial.println("No I2C devices found");

 else

 Serial.println("done");

Chapter 2 Arduino Nano 33 BLE Sense Board Development

69

This program is useful to check a list of I2C devices that is attached on
the Arduino Nano 33 BLE Sense board.

�Reading Sensor-Based-I2C Addresses
In this section, we read sensor data from an I2C device. You already
configured the hardware wiring shown in Figure 2-22. The PCF8591 AD/
DA Converter module has three sensors: thermistor, photo-voltaic cell,
and potentiometer. Each sensor has a channel address on 0x00, 0x01, and
0x03, respectively.

Let’s start to build an Arduino program to access sensor devices over
the I2C interface. Open the Arduino software and write this complete
program.

#include "Wire.h"
#define PCF8591 0x48 // I2C bus address
#define PCF8591_ADC_CH0 0x00 // thermistor
#define PCF8591_ADC_CH1 0x01 // photo-voltaic cell
#define PCF8591_ADC_CH2 0x02
#define PCF8591_ADC_CH3 0x03 // potentiometer
byte ADC1, ADC2, ADC3;

void setup()
{
 Wire.begin();
 Serial.begin(9600);
}
void loop()
{
 // read thermistor
 Wire.beginTransmission(PCF8591);
 Wire.write((byte)PCF8591_ADC_CH0);

 Wire.endTransmission();
 delay(100);
 Wire.requestFrom(PCF8591, 2);

Chapter 2 Arduino Nano 33 BLE Sense Board Development

70

 delay(100);
 ADC1=Wire.read();
 ADC1=Wire.read();

 Serial.print("Thermistor=");
 Serial.println(ADC1);

 // read photo-voltaic cell
 Wire.beginTransmission(PCF8591);
 Wire.write(PCF8591_ADC_CH1);
 Wire.endTransmission();
 delay(100);
 Wire.requestFrom(PCF8591, 2);
 delay(100);
 ADC2=Wire.read();
 ADC2=Wire.read();

 Serial.print("Photo-voltaic cell=");
 Serial.println(ADC2);

 // potentiometer
 Wire.beginTransmission(PCF8591);
 Wire.write(PCF8591_ADC_CH3);
 Wire.endTransmission();
 delay(100);
 Wire.requestFrom(PCF8591, 2);
 delay(100);
 ADC3=Wire.read();
 ADC3=Wire.read();

 Serial.print("potentiometer=");
 Serial.println(ADC3);

 delay(500);

}

Chapter 2 Arduino Nano 33 BLE Sense Board Development

71

Save this program as I2CSensor. Next you can compile and upload this

program into the Arduino Nano 33 BLE Sense. Open Serial Monitor on the

Arduino software to view the sensor data from the I2C protocol, as shown

in Figure 2-24.

How does it work? First, initialize your I2C, Serial, and PCF8591 AD/

DA Converter module. Define the I2C address channel in the setup()

function.

#include "Wire.h"

#define PCF8591 0x48 // I2C bus address

#define PCF8591_ADC_CH0 0x00 // thermistor

#define PCF8591_ADC_CH1 0x01 // photo-voltaic cell

#define PCF8591_ADC_CH2 0x02

#define PCF8591_ADC_CH3 0x03 // potentiometer

byte ADC1, ADC2, ADC3;

Figure 2-24.  Program output for reading sensors over I2C

Chapter 2 Arduino Nano 33 BLE Sense Board Development

72

void setup()

{

 Wire.begin();

 Serial.begin(9600);

}

You can read sensor data in the loop() function. To read thermistor

data, open I2C using Wire.beginTransmission() with passing PCF8591.

Then, select a channel for the thermistor with the value PCF8591_

ADC_CH0 using Wire.write(). Close transmission by calling Wire.

endTransmission(). Read sensor data with 2 bytes using the Wire.

requestFrom() function.

void loop()

{

 // read thermistor

 Wire.beginTransmission(PCF8591);

 Wire.write((byte)PCF8591_ADC_CH0);

 Wire.endTransmission();

 delay(100);

 Wire.requestFrom(PCF8591, 2);

 delay(100);

 ADC1=Wire.read();

 ADC1=Wire.read();

Set delay(100) to wait for the module to complete your request. You

can read data per byte using the Wire.read() function. Next, print the

thermistor data on the serial terminal.

 Serial.print("Thermistor=");

 Serial.println(ADC1);

Chapter 2 Arduino Nano 33 BLE Sense Board Development

73

With the same method, you can read the photo-voltaic cell by changing

the channel value to PCF8591_ADC_CH1. After that, read sensor data and

print the results to the serial terminal.

 // read photo-voltaic cell

 Wire.beginTransmission(PCF8591);

 Wire.write(PCF8591_ADC_CH1);

 Wire.endTransmission();

 delay(100);

 Wire.requestFrom(PCF8591, 2);

 delay(100);

 ADC2=Wire.read();

 ADC2=Wire.read();

 Serial.print("Photo-voltaic cell=");

 Serial.println(ADC2);

You can also read the potentiometer from the PCF8591 AD/DA

Converter module. Open the I2C interface and select the channel for

PCF8591_ADC_CH3. Then, you can read sensor data and print it on the serial

terminal.

 // potentiometer

 Wire.beginTransmission(PCF8591);

 Wire.write(PCF8591_ADC_CH3);

 Wire.endTransmission();

 delay(100);

 Wire.requestFrom(PCF8591, 2);

 delay(100);

 ADC3=Wire.read();

 ADC3=Wire.read();

 Serial.print("potentiometer=");

 Serial.println(ADC3);

Chapter 2 Arduino Nano 33 BLE Sense Board Development

74

You can continue your practice on the Arduino Nano 33 BLE Sense

with some of the protocols that we have already learned.

�Summary
This chapter covered basic Arduino programming using Sketch. You

learned how to access digital and analog I/O on the Arduino Nano 33 BLE

Sense board. We also explored how to implement PWM on Arduino Nano

33 BLE Sense and plot sensor data. Furthermore, you learned to use SPI

and I2C interfaces to communicate with external devices.

Next, we explore how to access internal sensor devices on the Arduino

Nano 33 BLE Sense.

Chapter 2 Arduino Nano 33 BLE Sense Board Development

75© Agus Kurniawan 2021
A. Kurniawan, IoT Projects with Arduino Nano 33 BLE Sense,
https://doi.org/10.1007/978-1-4842-6458-4_3

CHAPTER 3

Sensor Programming
The Arduino Nano 33 BLE Sense board has some internal sensors such

as an inertial measurement unit (IMU), a pressure sensor, a digital

microphone, a humidity and temperature sensor, and a gesture sensor.

This chapter explores how to access internal sensor devices on the Arduino

Nano 33 BLE Sense.

You will learn about the following topics in this chapter:

•	 Accessing the temperature and relative humidity

sensor.

•	 Plotting sensor data.

•	 Plotting sensor data using an OLED I2C display.

•	 Accessing the IMU sensor.

•	 Accessing the pressure sensor.

•	 Working with a digital microphone.

•	 Working with a gesture sensor.

https://doi.org/10.1007/978-1-4842-6458-4_3#DOI

76

�Introduction
The Arduino Nano 33 BLE Sense board has some internal sensors such as

IMU, a pressure sensor, a digital microphone, a humidity and temperature

sensor, and a gesture sensor. These sensor chips are shown in Figure 3-1.

Most sensor chips are attached on I2C protocol interfaces.

In Chapter 2, we learned about the I2C interface. We also performed

a scan for the I2C address. We can modify the i2c_scanner program from

Chapter 2 to list all I2C addresses in the Arduino Nano 33 BLE Sense. You

can write these complete scripts.

#include <Wire.h>

void setup() {

 Serial.begin(115200);

 Wire.begin();

 Serial.println("\nI2C Scanner");

}

Figure 3-1.  Some sensor chips on the Arduino Nano 33 BLE Sense
board

Chapter 3 Sensor Programming

77

void loop() {

 byte error, address;

 int nDevices;

 nDevices = 0;

 for(address = 1; address < 127; address++) {

 Wire.beginTransmission(address);

 error = Wire.endTransmission();

 if (error == 0) {

 Serial.print("I2C device found at address 0x");

 if (address < 16)

 Serial.print("0");

 Serial.println(address, HEX);

 nDevices++;

 }

 }

 delay(5000);

}

Save this program as i2c_internalsensor. Next, compile and upload

this program into the Arduino Nano 33 BLE Sense. Make sure to change

your board position, shake your board, or move your board so you have a

measurement result on the serial terminal.

Figure 3-2 shows the program output for the i2c_internalsensor

program, a list of I2C addresses in the Arduino Nano 33 BLE Sense.

Chapter 3 Sensor Programming

78

�Temperature and Relative Humidity
The Arduino Nano 33 BLE Sense board has a built-in temperature and

relative humidity sensor that uses HTS221. To work with this sensor, use

the Arduino_HTS221 library. You can documentation for this sensor at

https://www.arduino.cc/en/Reference/ArduinoHTS221.

You can install the Arduino_HTS221 library via Library Manager.

Type Arduino_HTS221 in the search text box so you can see the Arduino_

HTS221 library, as shown in Figure 3-3.

Figure 3-2.  A list of I2C address in the Arduino Nano 33 BLE Sense

Chapter 3 Sensor Programming

http://www.arduino.cc/en/Reference/ArduinoHTS221

79

Click Install to install the Arduino_HTS221 library. Make sure your

computer has Internet access. After that, you can access the HTS221

sensor.

For this demonstration, we read the temperature and relative humidity

sensor. You can use the readTemperature() function from the HTS object

to read temperature. You can also can call the readHumidity() function to

read humidity. Before you call these functions, initialize the sensor device

by calling the HTS.begin() function. Finaly, you can print the sensor data

into the serial terminal.

Open the Arduino software and write these scripts to read the

temperature and humidity sensors.

#include <Arduino_HTS221.h>

void setup() {

 Serial.begin(115200);

 while (!Serial);

Figure 3-3.  Installing the Arduino_HTS221 library

Chapter 3 Sensor Programming

80

 if (!HTS.begin()) {

 �Serial.println("Failed to initialize humidity temperature

sensor!");

 while (1);

 }

}

void loop() {

 float temperature = HTS.readTemperature();

 float humidity = HTS.readHumidity();

 Serial.print("Temperature = ");

 Serial.print(temperature);

 Serial.println(" °C");

 Serial.print("Humidity = ");

 Serial.print(humidity);

 Serial.println(" %");

 Serial.println();

 delay(1000);

}

Save this program as TempHumidity. You can then compile and

upload this program into the Arduino Nano 33 BLE Sense. We can the see

program output using Serial Monitor, as shown in Figure 3-4.

Chapter 3 Sensor Programming

81

�Plotting Sensor Data
You just saw that we can read temperature and humidity sensor data from

built-in sensor devices on the Arduino Nano 33 BLE Sense. In this section,

we plot our sensor data using the Serial Plotter tool from Arduino. For

testing, use the preceding project that reads temperature and humidity

sensors.

The first step is to create a new Sketch program. Open the Arduino

software and include the HTS221 library in the program. Next, initialize the

HTS221 sensor and serial communication in the setup() function. Set the

serial baud rate value to 115200 and initialize HTS221 by calling the HTS.

begin() function.

#include <Arduino_HTS221.h>

void setup() {

 Serial.begin(115200);

 while (!Serial);

Figure 3-4.  Program output for TempHumidity program

Chapter 3 Sensor Programming

82

 if (!HTS.begin()) {

 �Serial.println("Failed to initialize humidity temperature

sensor!");

 while (1);

 }

}

In the loop() function, we read the temperature sensor using HTS.

readTemperature(). We also read the humidity sensor using the HTS.

readHumidity() function.

void loop() {

 float temperature = HTS.readTemperature();

 float humidity = HTS.readHumidity();

To plot the temperature and humidity sensors to Serial Plotter, you

can print sensor values with the , delimiter. To set a legend name on

Serial Plotter, you can use “sensor_name:”. For instance, you can print the

temperature and humidity sensor variables as follows.

 Serial.print("Temperature:");

 Serial.print(temperature);

 Serial.print(", ");

 Serial.print("Humidity:");

 Serial.println(humidity);

 delay(500);

}

Now save this program as Plot_TempHumidity. You can then compile

and upload the program into the Arduino Nano 33 BLE Sense. After

uploading the program, open Serial Plotter from Tools menu in the

Arduino software. You should see the sensor outputs in Serial Plotter,

too. Figure 3-5 shows the program output from the Plot_TempHumidity

program. You also should see the sensor legend names like Temperature

and Humidity.

Chapter 3 Sensor Programming

83

�Plotting Sensor Data Using an OLED I2C
Display
In this section, we cover how to display sensor data on an OLED display.

There are two interface models on an OLED display: SPI and I2C. This

demonstration uses an OLED I2C display that you can buy at any local

electronics store or online.

For this demo, I used an OLED I2C display with 0.96 inch or 128 × 64

pixels, obtained online and shown in Figure 3-6. Technically, you can use

any display size for the OLE I2C display. The next step is wiring OLED I2C

display to the Arduino Nano 33 BLE Sense board.

Figure 3-5.  Plotting the Plot_TempHumidity sensor data in Serial
Plotter

Chapter 3 Sensor Programming

84

�Wiring for the OLED I2C Display
We use an OLED display with an I2C interface so we can connect the

display to the Arduino Nano 33 BLE Sense over I2C pins. You can see

how the wiring should look in Figure 3-7. You can perform this wiring as

follows.

•	 OLED I2C display module SDA is connected to Arduino

A4 pin.

•	 OLED I2C display module SCL is connected to Arduino

A5 pin.

•	 OLED I2C display module VCC is connected to Arduino

3.3V.

•	 OLED I2C display module GND is connected to

Arduino GND pin.

Figure 3-6.  OLED 0.96” I2C display

Chapter 3 Sensor Programming

85

Next, you can build an Arduino program for the OLED I2C display.

�Checking the I2C Address of the OLED I2C
Display
Now that the wiring between the Arduino Nano 33 BLE Sense and OLED

I2C display is complete, you can use the i2c_scanner program from

Chapter 2 to check for I2C addresses from devices. This will give you the

I2C address from the OLED I2C display.

Load the i2c_scanner program into the Arduino software, then compile

and upload this program into the Arduino Nano 33 BLE Sense. After that,

open Serial Monitor. You should see three I2C addresses. Two of them are

Figure 3-7.  Wiring the OLED I2C display on the Arduino Nano 33
BLE Sense

Chapter 3 Sensor Programming

86

I2C built-in sensors on the Arduino Nano 33 BLE Sense. The third one is

the OLED I2C display. The program output is shown in Figure 3-8. You can

see the OLED I2C display running on the 0x3C I2C address.

The next step is to set up libraries to build programs for the OLED I2C

display on the Arduino Nano 33 BLE Sense.

�Setting Up the OLED I2C Display Library
To work with the OLED I2C display on Arduino, you need to install two

libraries from Adafruit.

•	 Adafruit_SSD1306: https://github.com/adafruit/

Adafruit_SSD1306

•	 Adafruit GFX Library: https://github.com/adafruit/

Adafruit-GFX-Library

Figure 3-8.  Detecting the I2C address for the OLED I2C display

Chapter 3 Sensor Programming

https://github.com/adafruit/Adafruit_SSD1306
https://github.com/adafruit/Adafruit_SSD1306
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/adafruit/Adafruit-GFX-Library

87

We can install these libraries via Library Manager on the Arduino

software. Type Adafruit_SSD1306 and Adafruit GFX Library to locate and

install these libraries. Figure 3-9 shows the Adafruit_SSD1306 library.

Install both of the libraries. You might be asked to install additional

libraries (e.g., Adafruit BusIO) to enable working the with Adafruit_

SSD1306 and Adafruit GFX libraries.

�Testing the OLED I2C Display
After the Adafruit_SSD1306 library is installed, you can test your OLED I2C

display using program samples from the Adafruit_SSD1306 library. From

the File menu, select Examples ➤ Adafruit_SSD1306 ➤ ssd1306_128x64_

i2c. Once you make this selection, you should see the codes shown in

Figure 3-10.

Figure 3-9.  Adding libraries for the OLED I2C display

Chapter 3 Sensor Programming

88

Next, modify this program with the I2C address from your OLED I2C

display. In the previous section, we found the 0x3C address for the OLED

I2C display. Replace the I2C address in display.begin() with 0x3C as

shown in Figure 3-10.

Now you can compile and upload this program to the the Arduino

Nano 33 BLE Sense. You should see some forms on the OLED I2C display.

Figure 3-11 shows the program output from ssd1306_128x64_i2c on the

OLED I2C display with 128 × 64 pixels.

Figure 3-10.  A program sample for the OLED I2C display

Chapter 3 Sensor Programming

89

If you can see the display output from the ssd1306_128x64_i2c

program, it means your OLED I2C display works. We will use this OLED to

display sensor data in the following demonstrations. If you don’t see the

display output, first, check the I2C address of the OLED I2C display. Then,

make sure your OLED I2C display has a display size of 128 × 64 pixels.

�Displaying Temperature and Humidity Sensor
In this section, we build an Arduino program to display the output of the

temperature and humidity data sensors to the OLED I2C display. You

can use a program from the previous section to read the temperature and

humidity sensor.

Figure 3-11.  Running the ssd1306_128x64_i2c program on the OLED
I2C display

Chapter 3 Sensor Programming

90

Open the Arduino software and create a new Sketch program. Start by

importing all required libraries for the I2C library, OLED I2C display, and

HTS221 sensor.

#include <SPI.h>

#include <Wire.h>

#include <Adafruit_GFX.h>

#include <Adafruit_SSD1306.h>

#include <Arduino_HTS221.h>

Next you need to define the OLED I2C display size. For this demo, I

used 128 × 64 pixels. You can change the size based on your OLED module.

#define SCREEN_WIDTH 128

#define SCREEN_HEIGHT 64

Next, configure Adafruit_SSD1306 with the I2C address of the OLED

module and display size.

#define OLED_RESET 4 // Reset pin

Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire,

OLED_RESET);

In the setup() function, initialize serial communication and the

Adafruit_SSD1306 library. Call display.begin() with some parameters to

initialize your OLED display.

void setup() {

 Serial.begin(115200);

 if(!display.begin(SSD1306_SWITCHCAPVCC, 0x3C)) {

 Serial.println(F("SSD1306 allocation failed"));

 for(;;); // Don't proceed, loop forever

 }

Chapter 3 Sensor Programming

91

After that, test the OLED I2C display by calling display() for 2

seconds. Then, clear the screen of the OLED display.

 display.display();

 delay(2000); // Pause for 2 seconds

 // Clear the buffer

 display.clearDisplay();

Finally, initialize the HTS221 sensor by calling the HTS.begin()

function.

 if (!HTS.begin()) {

 �Serial.println("Failed to initialize humidity temperature

sensor!");

 while (1);

 }

In the loop() function, read the temperature and humidity sensors.

Call the HTS.readTemperature() function to read the temperature sensor

and the HTS.readHumidity() function to read the humidity sensor. Store

all sensor data in the temperature and humidity variables.

void loop() {

 float temperature = HTS.readTemperature();

 float humidity = HTS.readHumidity();

Next, display the sensor data on the OLED I2C display using the

print() function. Use setTextSize() to set the font size for the display

text.

 display.clearDisplay();

 display.setTextSize(1);

 display.setTextColor(SSD1306_WHITE);

 display.setCursor(0,0);

 display.print("Temperature");

Chapter 3 Sensor Programming

92

 display.setTextSize(2);

 display.setCursor(0,12);

 String temp = String(temperature);

 temp = temp + " *C";

 display.print(temp);

 display.setTextSize(1);

 display.setCursor(0,30);

 display.print("Humidity");

 display.setTextSize(2);

 display.setCursor(0,48);

 display.print(String(humidity));

 display.display();

Last, display the sensor data onto the serial terminal using the Serial.

print() and Serial.println() functions.

 Serial.print("Temperature = ");

 Serial.print(temperature);

 Serial.println(" °C");

 Serial.print("Humidity = ");

 Serial.print(humidity);

 Serial.println(" %");

 Serial.println();

 delay(1000);

}

Save the program as OledSensor, then compile and upload the

program to the Arduino Nano 33 BLE Sense. You should see sensor data

on the OLED I2C display, as shown in Figure 3-12. Figure 3-13 shows the

program output on Serial Monitor.

Chapter 3 Sensor Programming

93

Figure 3-13.  Program output from OledSensor

Figure 3-12.  Displaying sensor data on an OLED I2C display

Chapter 3 Sensor Programming

94

�IMU Sensor
The Arduino Nano 33 BLE Sense board has an IMU sensor with an

LSM9DS3 chip. This chip provides IMU sensors such as an accelerometer,

a gyroscope, and a magnetometer. We can use the Arduino_LSM9DS3

library to access the IMU sensor on the Arduino Nano 33 BLE Sense.

You can find this library at https://www.arduino.cc/en/Reference/

ArduinoLSM9DS1.

To install the Arduino_LSM9DS3 library, use Library Manager and

enter Arduino_LSM9DS3 in the search text box. You should see this library

as shown in Figure 3-14. Install this library by clicking Install.

The next step is to build a Sketch program to read the accelerometer,

gyroscope, and magnetometer sensors on the Arduino Nano 33 BLE Sense.

You need to open the Arduino software and create a new program. First,

initialize serial communication and the Arduino_LSM9DS1 libraries in the

setup() function.

Figure 3-14.  Installing the Arduino_LSM9DS1 library

Chapter 3 Sensor Programming

https://www.arduino.cc/en/Reference/ArduinoLSM9DS1
https://www.arduino.cc/en/Reference/ArduinoLSM9DS1

95

#include <Arduino_LSM9DS1.h>

void setup() {

 Serial.begin(115200);

 while (!Serial);

 Serial.println("Started");

 if (!IMU.begin()) {

 Serial.println("Failed to initialize IMU!");

 while (1);

 }

}

In the loop() function, we read acceleration sensor. Check if sensor

data are available using IMU.accelerationAvailable(). Then, we can

read sensor data by calling IMU.readAcceleration(). After that, we print

sensor data to serial terminal.

void loop() {

 float x, y, z;

 if (IMU.accelerationAvailable()) {

 IMU.readAcceleration(x, y, z);

 Serial.print("Accelerometer: ");

 Serial.print(x);

 Serial.print('\t');

 Serial.print(y);

 Serial.print('\t');

 Serial.println(z);

 }

Next, read the gyroscope sensor by calling IMU.readGyroscope() after

calling the IMU.gyroscopeAvailable() function.

Chapter 3 Sensor Programming

96

 if (IMU.gyroscopeAvailable()) {

 IMU.readGyroscope(x, y, z);

 Serial.print("Gyroscop: ");

 Serial.print(x);

 Serial.print('\t');

 Serial.print(y);

 Serial.print('\t');

 Serial.println(z);

 }

Last, we read a magnetic field sensor on the Arduino Nano 33 BLE

Sense by calling the IMU.readMagneticField() function and then

print the result to the serial terminal. Make sure you call the IMU.

gyroscopeAvailable() function before reading the sensor data.

 if (IMU.magneticFieldAvailable()) {

 IMU.readMagneticField(x, y, z);

 Serial.print("Magnetic Field: ");

 Serial.print(x);

 Serial.print('\t');

 Serial.print(y);

 Serial.print('\t');

 Serial.println(z);

 }

 delay(300);

}

Save this program as IMUSensor, then compile and upload it to

the Arduino Nano 33 BLE Sense. You can see program output on Serial

Monitor, as shown in Figure 3-15.

Chapter 3 Sensor Programming

97

�Pressure Sensor
The Arduino Nano 33 BLE Sense has a pressure sensor with an LPS22HIB

chip. This chip provides a pressure sensor with values ranging from 260

to 1260 hPa. In this section, we access the pressure sensor on the Arduino

Nano 33 BLE Sense.

We can use the Arduino_LPS22HB library to access pressure sensor

on the Arduino Nano 33 BLE Sense board. You can find this library at

https://www.arduino.cc/en/Reference/ArduinoLPS22HB.

To access the pressure sensor, install the Arduino_LPS22HB library in

Library Manager. You can type Arduino_LPS22HB in the search text box

to displays the library, as shown in Figure 3-16. Click Install to install the

library.

Figure 3-15.  Program output from IMUSensor program

Chapter 3 Sensor Programming

https://www.arduino.cc/en/Reference/ArduinoLPS22HB

98

The next step is to write a Sketch program to read the pressure data on

the Arduino Nano 33 BLE Sense.

Open the Arduino software. We can access the pressure sensor using

the Arduino_LPS22HB library. First, initialize the LPS22HB chip in the

setup() function by calling the BARO.begin() function.

#include <Arduino_LPS22HB.h>

void setup() {

 Serial.begin(115200);

 while (!Serial);

 if (!BARO.begin()) {

 Serial.println("Failed to initialize pressure sensor!");

 while (1);

 }

}

Figure 3-16.  Installing the Arduino_LPS22HB library

Chapter 3 Sensor Programming

99

In the loop() function, read the pressure sensor data by calling the

BARO.readPressure() function. You can then print the sensor data to the

serial terminal.

void loop() {

 float pressure = BARO.readPressure();

 Serial.print("Pressure: ");

 Serial.print(pressure);

 Serial.println(" kPa");

 delay(1000);

}

Save this program as PressureSensor, then compile and upload it to

the Arduino Nano 33 BLE Sense. You can see the program output in Serial

Monitor, as displayed in Figure 3-17.

Figure 3-17.  Program output from PressureSensor

Chapter 3 Sensor Programming

100

�Digital Microphone
The Arduino Nano 33 BLE Sense board provides a digital microphone.

Refer back to Figure 3-1 to see the microphone position. This digital

microphone is built from MP34DT06JTR. To work with a digital

microphone on Arduino Nano 33 BLE Sense, use the PDM library. This

library is installed when you install the Arduino Nano 33 BLE Sense board

with the Arduino software. The PDM library document can be read at

https://www.arduino.cc/en/Reference/PDM. For this demonstration, we

plot the amplitude value from the digital microphone using Serial Plotter.

You can open the Arduino software to start to write a program.

First, include the PDM library. Then declare the sampleBuffer variable

and samplesRead function.

#include <PDM.h>

short sampleBuffer[256];

// number of samples read

volatile int samplesRead;

In the setup() function, initialize serial communication. Pass the

onPDMdata() function to PDM.onReceive(). Then call PDM.begin() to

initialize the PDM library.

void setup() {

 Serial.begin(9600);

 while (!Serial);

 // configure the data receive callback

 PDM.onReceive(onPDMdata);

 // one channel (mono mode) 16 kHz sample rate

 if (!PDM.begin(1, 16000)) {

Chapter 3 Sensor Programming

https://www.arduino.cc/en/Reference/PDM

101

 Serial.println("Failed to start PDM!");

 while (1);

 }

}

In the loop() function, check the samplesRead value. If the

samplesRead value is more than 1, we read sensor data from

sampleBuffer[]. Then, print the data to the serial terminal.

void loop() {

 if (samplesRead) {

 for (int i = 0; i < samplesRead; i++) {

 Serial.println(sampleBuffer[i]);

 }

 // clear the read count

 samplesRead = 0;

 }

}

Implement the onPDMdata() function to read data from the digital

microphone. We check if the data are available using the PDM.available()

function. Then, read the sensor data by calling the PDM.read() function.

This function is used by passing it to the PDM.onReceive() function. We

already called it in the setup() function.

void onPDMdata() {

 // query the number of bytes available

 int bytesAvailable = PDM.available();

 // read into the sample buffer

 PDM.read(sampleBuffer, bytesAvailable);

 // 16-bit, 2 bytes per sample

 samplesRead = bytesAvailable / 2;

}

Chapter 3 Sensor Programming

102

Save this program as PDMSerialPlotter. You can then compile and

upload the program to the Arduino Nano 33 BLE Sense. You can see the

program output on Serial Plotter. If you speak into the digital microphone

from Arduino Nano 33 BLE Sense, you should see a signal graph on Serial

Plotter, as displayed in Figure 3-18.

�Digital Proximity, Ambient Light, RGB,
and Gesture Sensor
The Arduino Nano 33 BLE Sense has a special built-in sensor for digital

proximity, ambient light, RGB color, and gesture sensors. These sensors use

an APDS9960 chip, so we can include these sensors into our Sketch program.

In this section, we explore all of the sensors inside the APDS9960 chip.

To work with the APDS9960 sensor chip, we can install the Arduino_

APDS9960 library via Library Manager. Type Arduino_APDS9960 in the

search text box. You should see this library as shown in Figure 3-19. Click

Install to install the library.

Figure 3-18.  Plotting amplitude values from a digital
microphone

Chapter 3 Sensor Programming

103

Once the Arduino_APDS9960 library is installed, you can build various

Sketch programs using the sensors from the APDS9960 chip. Detail about

the Arduino_APDS9960 library found at https://www.arduino.cc/en/

Reference/ArduinoAPDS9960.

First, we build Sketch programs with the proximity sensor.

�Proximity Sensor
The proximity sensor can be used to check for the existence of an

object. When we put our object next to the APDS9960 chip, we will

obtain a proximity value. This value can range from 0 to 255. For this

demonstration, we build a program to turn on an LED when the proximity

value is between 0 and 50.

Open the Arduino software to create a new program. First, initialize

serial communication in the setup() function, digital mode for output,

and Arduino_APDS9960 by calling the APDS.begin() function.

#include <Arduino_APDS9960.h>

Figure 3-19.  Installing the Arduino_APDS9960 library

Chapter 3 Sensor Programming

https://www.arduino.cc/en/Reference/ArduinoAPDS9960
https://www.arduino.cc/en/Reference/ArduinoAPDS9960

104

void setup() {

 Serial.begin(115200);

 while (!Serial);

 pinMode(LED_BUILTIN, OUTPUT);

 if (!APDS.begin()) {

 Serial.println("Error initializing APDS9960 sensor!");

 }

}

In the loop() function, check if the proximity value is available using

the APDS.proximityAvailable() function. Next, read sensor data by

calling the APDS.readProximity() function.

void loop() {

 if (APDS.proximityAvailable()) {

 int proximity = APDS.readProximity();

 if(proximity<50){

 digitalWrite(LED_BUILTIN, HIGH);

 }else {

 digitalWrite(LED_BUILTIN, LOW);

 }

 // print value to the Serial Monitor

 Serial.println(proximity);

 }

 // wait a bit before reading again

 delay(100);

}

Chapter 3 Sensor Programming

105

Save this program as ProximitySensor, then compile and upload it to

the Arduino Nano 33 BLE Sense. You can try and put your hand next to the

APDS9960 chip and then look at the proximity value in Serial Monitor. You

can see the program output in Figure 3-20.

�Color Sensor
The APDS9960 chip has a color sensor. We will obtain an RGB value that

consists of a red value, a green value, and a blue value. For this example,

we read color from an object next to the APDS9960 chip.

Start by opening the Arduino software and creating a new program.

Initialize serial communication and the APDS9960 chip by calling the

APDS.begin() function.

#include <Arduino_APDS9960.h>

void setup() {

 Serial.begin(9600);

 while (!Serial);

Figure 3-20.  Program output from ProximitySensor program

Chapter 3 Sensor Programming

106

 if (!APDS.begin()) {

 Serial.println("Error initializing APDS9960 sensor.");

 }

}

In the loop() function, check if the color sensor data are available

using the APDS.colorAvailable() function. Then, we read the sensor

using APDS.readColor(). You will obtain three values— Red, Green, and

Blue—and print them to the serial terminal.

void loop() {

 // check if a color reading is available

 while (! APDS.colorAvailable()) {

 delay(5);

 }

 int r, g, b;

 // read the color

 APDS.readColor(r, g, b);

 // print the values

 Serial.print("r = ");

 Serial.println(r);

 Serial.print("g = ");

 Serial.println(g);

 Serial.print("b = ");

 Serial.println(b);

 Serial.println();

 // wait a bit before reading again

 delay(1000);

}

Chapter 3 Sensor Programming

107

Save this program as ColorSensor, then compile and upload it to

the Arduino Nano 33 BLE Sense. You can try to put any color next to the

APDS9960 chip and then view the color sensor value in Serial Monitor.

The program output in Figure 3-21 was obtained from a white object. You

should probably use additional light if you are in a low-lit room.

�Gesture Sensor
The last sensor from the APDS9960 chip is a gesture sensor. We can

perform four gestures on this chip, in the following directions.

•	 UP: From USB connector toward antenna.

•	 DOWN: From antenna toward USB connector.

•	 LEFT: From the analog pins side toward the digital pins

side.

•	 RIGHT: From the digital pins side toward the analog

pins side.

Figure 3-21.  Program output from ColorSensor

Chapter 3 Sensor Programming

108

In this demo scenario, we develop Sketch program to turn on an

LED when a user performs a gesture in the UP and RIGHT directions.

Otherwise, the LED will be off.

Start by opening the Arduino software and creating a new program.

Initialize serial communication and the APDS9960 chip by calling the

APDS.begin() function.

#include <Arduino_APDS9960.h>

void setup() {

 Serial.begin(115200);

 while (!Serial);

 pinMode(LED_BUILTIN, OUTPUT);

 if (!APDS.begin()) {

 Serial.println("Error initializing APDS9960 sensor!");

 }

 Serial.println("Detecting gestures ...");

}

In the loop() function, check if the gesture sensor data are available

using the APDS.gestureAvailable() function. Then, read the sensor using

APDS.readGesture(). You will obtain four values: GESTURE_UP, GESTURE_

DOWN, GESTURE_LEFT, and GESTURE_RIGHT. When you have sensor values for

GESTURE_UP and GESTURE_RIGHT, the LED will turn on. Otherwise, the LED

will be turned off.

void loop() {

 if (APDS.gestureAvailable()) {

 // a gesture was detected, read and print to serial monitor

 int gesture = APDS.readGesture();

Chapter 3 Sensor Programming

109

 switch (gesture) {

 case GESTURE_UP:

 Serial.println("Detected UP gesture");

 digitalWrite(LED_BUILTIN, HIGH);

 break;

 case GESTURE_DOWN:

 Serial.println("Detected DOWN gesture");

 digitalWrite(LED_BUILTIN, LOW);

 break;

 case GESTURE_LEFT:

 Serial.println("Detected LEFT gesture");

 digitalWrite(LED_BUILTIN, LOW);

 break;

 case GESTURE_RIGHT:

 Serial.println("Detected RIGHT gesture");

 digitalWrite(LED_BUILTIN, HIGH);

 break;

 default:

 // ignore

 break;

 }

 }

}

Save this program as GestureSensor, the compile and upload it to the

Arduino Nano 33 BLE Sense. You can see the program output in Serial

Monitor.

Chapter 3 Sensor Programming

110

You can move your hand or object from the USB connector toward

the antenna (UP direction) or from the digital pins side toward the analog

pins side (RIGHT direction). As a result, you should see a lit LED on the

Arduino Nano 33 BLE Sense. You also can perform a DOWN or LEFT

direction gesture to turn off the LED. The example output in Figure 3-22 is

the result of some gesture directions.

You can continue to practice developing Sketch programs by applying

the built-in sensors in the Arduino Nano 33 BLE Sense board.

�Summary
This chapter covered how to access internal sensors in the Arduino Nano

33 BLE Sense board. We have built Sketch programs to access an IMU, a

pressure sensor, a digital microphone, a humidity and temperature sensor,

and a gesture sensor. We also plotted sensor data using the Serial Plotter

tool and an OLED I2C display.

Next, we turn to working with BLE on the Arduino Nano 33 BLE Sense

board.

Figure 3-22.  Program output from the GestureSensor program

Chapter 3 Sensor Programming

111© Agus Kurniawan 2021
A. Kurniawan, IoT Projects with Arduino Nano 33 BLE Sense,
https://doi.org/10.1007/978-1-4842-6458-4_4

CHAPTER 4

Bluetooth Low Energy
The Arduino Nano 33 BLE Sense board is built from the nRF52840

processor from Nordic. This processor has a Bluetooth and BLE radio

module. In this chapter, we explore how to get started with BLE on the

Arduino Nano 33 BLE Sense. We will build programs to use this BLE

module.

You will learn about the following topics in this chapter:

•	 Setting up a BLE library on Arduino Nano 33 BLE

Sense.

•	 Building a simple BLE application.

•	 Developing an LED control program over BLE.

•	 Exposing sensor data over the BLE service.

�Introduction
The Arduino Nano 33 BLE Sense board is an IoT platform from Arduino.

This board uses a Bluetooth module to connect to a network. Arduino

Nano 33 BLE Sense includes support for BLE radio. BLE technology

enables users to advertise services and allows interactions among BLE

devices such as mobile devices.

https://doi.org/10.1007/978-1-4842-6458-4_4#DOI

112

Each BLE radio can act as a bulletin board or a reader. When it serves

as a bulletin board, we can expose some data for all BLE radios, which are

BLE readers. The BLE specification also provides a notification mechanism

to alert readers when data are changed.

In this chapter, we explore how to work with BLE on the Arduino Nano

33 BLE Sense. Next, we set up a BLE library to work with BLE radio on the

Arduino Nano 33 BLE Sense.

�Setting up Bluetooth Low Energy
To work with BLE on the Arduino Nano 33 BLE Sense, you need the

ArduinoBLE library. You can then perform BLE operations such as making

and advertising BLE services. Details of the ArduinoBLE library can be

found at https://www.arduino.cc/en/Reference/ArduinoBLE.

You can open Library Manager from the Sketch menu by selecting

Include Library ➤ Manage Libraries. Once those options are selected, you

will see the screen shown in Figure 4-1.

Figure 4-1.  Adding the ArduinoBLE library

Chapter 4 Bluetooth Low Energy

https://www.arduino.cc/en/Reference/ArduinoBLE

113

Type ArduinoBLE in the search text box and press Enter. You should

see the ArduinoBLE library in the resulting form. Select this library and

click Install. Once installation is complete, you can build an Arduino

program to apply BLE radio.

�Demo 1: Hello Arduino BLE
In the first demo we will build a Hello World application for BLE radio. We

advertise our BLE with a specific BLE name. If the BLE reader is connected,

we will set it to turn on the LED. When the BLE reader is disconnected, we

will set it to turn off the LED. The next step is to write a program with the

Arduino software.

�Writing Sketch Program
We will develop Arduino program to advertise the BLE service and turn on

the LED after the BLE reader is connected. Start by opening the Arduino

software. Create a new program. Next, write codes step-by-step.

First, import the ArduinoBLE library into the program by adding this

code.

#include <ArduinoBLE.h>

In the setup() function, initialize serial communication, the LED, and

BLE radio. Call Serial.begin() to initialize serial communication with

a baud rate value of 115200. Set the LED pin on LED_BUILTIN as OUTPUT

mode. To activate BLE radio on the Arduino Nano 33 BLE Sense, we call

the BLE.begin() function.

void setup() {

 Serial.begin(115200);

 while (!Serial);

 pinMode(LED_BUILTIN, OUTPUT);

Chapter 4 Bluetooth Low Energy

114

 // begin initialization

 if (!BLE.begin()) {

 Serial.println("starting BLE failed!");

 while (1);

 }

Next, set your BLE radio name by calling BLE.setLocalName(). This

name will be detected on the BLE reader. Set the BLE UUID by calling

the BLE.setAdvertisedServiceUuid() function. BLE UUID represents

a computed 128-bit value. You can generate UUID using the online tool

available at https://www.guidgenerator.com/online-guid-generator.

aspx.

 BLE.setLocalName("HelloBLE");

 �BLE.setAdvertisedServiceUuid("19B10000-E8F2-537E-4F6C-

D104768A1214");

 // start advertising

 BLE.advertise();

 �Serial.println("Bluetooth device active, waiting for

connections...");

}

Make sure your BLE UUID complies with standard BLE SIG. Some

BLE UUIDs are reserved by their services. You can check these services

at https://www.bluetooth.com/specifications/assigned-numbers/

service-discovery/.

Next, we wait for the incoming BLE reader on the loop() function. We

can call BLE.contral() to wait for BLE readers.

void loop() {

 // wait for a BLE central

 BLEDevice central = BLE.central();

Chapter 4 Bluetooth Low Energy

https://www.guidgenerator.com/online-guid-generator.aspx
https://www.guidgenerator.com/online-guid-generator.aspx
https://www.bluetooth.com/specifications/assigned-numbers/service-discovery/
https://www.bluetooth.com/specifications/assigned-numbers/service-discovery/

115

After the BLE reader is connected to your BLE radio on the Arduino

Nano 33 BLE Sense, we can obtain the BLEDevice object. Then, turn

on LED by calling digitalWrite() with a passing HIGH value. Then, we

perform infinite looping checking the connection status.

 if (central) {

 Serial.print("Connected to central: ");

 Serial.println(central.address());

 digitalWrite(LED_BUILTIN, HIGH);

 while (central.connected()) {

 // do nothing

 }

If the BLE reader is disconnected, you will obtain a false value

from central.connected(). After that, turn off the LED by calling

digitalWrite() with a passing LOW value.

 digitalWrite(LED_BUILTIN, LOW);

 Serial.print("Disconnected from central: ");

 Serial.println(central.address());

 }

}

Your program is done. You can save this program as HelloBLE.

�Testing Program
Now your Arduino program HelloBLE can be compiled and uploaded

to the Arduino Nano 33 BLE Sense. To test the program, you will need

a mobile phone with an Android or iOS platform. This demo uses an

Android phone.

Chapter 4 Bluetooth Low Energy

116

First, open Serial Monitor to view the program output from the

HelloBLE program. Next, download the nRF Connect for Mobile

application from the Google Play Store, as shown in Figure 4-2, or Apple

Store.

Download and install the nRF Connect for Mobile application for your

mobile platform. After it is installed, you can run this program. You can see

the initial result of running this application on Android in Figure 4-3. The

next step is to connect to the Arduino Nano 33 BLE Sense.

Figure 4-2.  nRF Connect for Mobile application in the Google Play
Store

Chapter 4 Bluetooth Low Energy

117

Tap SCAN on the device to obtain a list of BLE devices. You should see

the HelloBLE service, as highlighted in Figure 4-4. If you don’t see it, try

tapping SCAN again.

Figure 4-3.  A form of nRF Connect for Mobile application

Chapter 4 Bluetooth Low Energy

118

Next tap CONNECT for HelloBLE, highlighted in Figure 4-4. After

that, you are connected the to Arduino Nano 33 BLE Sense board over

BLE radio. Figure 4-5 shows that this Android phone is connected to the

HelloBLE service from the Arduino Nano 33 BLE Sense.

Figure 4-4.  HelloBLE service is displayed

Chapter 4 Bluetooth Low Energy

119

To disconnect from the HelloBLE service, you can tap

DISCONNECT. That causes the mobile device to close BLE radio

communication. If you already opened Serial Monitor, you will see all

event messages on this tool. You can view program output in Serial

Monitor in Figure 4-6.

Figure 4-5.  Connected to HelloBLE service

Chapter 4 Bluetooth Low Energy

120

�Demo 2: Controlling an LED with BLE
In this demo, we will build an LED controller over BLE radio using the BLE

service to expose the LED service. We can turn the LED on and off LED

using a mobile application. For implementation, we use a program sample

from Arduino, LED. Next, we develop Sketch program.

�Writing Program
We will develop an Arduino program to control an LED over BLE radio.

Start by opening the Arduino software to create a new program. Next, we

write the code step-by-step.

First, import the ArduinoBLE library into your program and initialize

the BLE Service with BLERead and BLEWrite characteristics. Define ledPin

for LED_BUILTIN. Write the following code.

#include <ArduinoBLE.h>

Figure 4-6.  Program output in Serial Monitor from HelloBLE

Chapter 4 Bluetooth Low Energy

121

BLEService ledService("19B10000-E8F2-537E-4F6C-D104768A1214");

BLEByteCharacteristic switchCharacteristic("19B10001-E8F2-537E-

4F6C-D104768A1214", BLERead | BLEWrite);

const int ledPin = LED_BUILTIN;

Next, initialize serial communication and digital OUTPUT mode on the

setup() function. In addition, initialize BLE radio on the Arduino Nano 33

BLE Sense using the BLE.begin() function.

void setup() {

 Serial.begin(9600);

 while (!Serial);

 // set LED pin to output mode

 pinMode(ledPin, OUTPUT);

 // begin initialization

 if (!BLE.begin()) {

 Serial.println("starting BLE failed!");

 while (1);

 }

Next, set the BLE service and characteristics using the

addCharacteristic() function, and then initialize characteristic values by

calling the writeValue() function.

 // set advertised local name and service UUID:

 BLE.setLocalName("LED");

 BLE.setAdvertisedService(ledService);

 // add the characteristic to the service

 ledService.addCharacteristic(switchCharacteristic);

 // add service

Chapter 4 Bluetooth Low Energy

122

 BLE.addService(ledService);

 // set the initial value for the characteristic:

 switchCharacteristic.writeValue(0);

After you have defined your BLE service, you can start to advertise

using the BLE.advertise() function. Print a message for information that

our BLE is ready for incoming BLE readers.

 // start advertising

 BLE.advertise();

 Serial.println("BLE LED Peripheral");

}

In the loop() function, we wait for BLE readers. Use BLE.central().

If the BLE reader is connected to the Arduino Nano 33 BLE Sense, you will

obtain a BLEDevice object.

void loop() {

 BLEDevice central = BLE.central();

After the BLE reader is connected to the Arduino Nano 33 BLE Sense,

print the media access control (MAC) address from the BLE reader. Next,

we perform a loop and wait for input data from the BLE reader using the

value() function

……………………………………………………………………………………………

…………………………………………………………………………………………………

…………………………………………………………………………………………………

……………………………………………………………………………………….0000000

000 from the BLE service

characteristic. If the user sends data with a value greater than 0, the LED

will be turned on; otherwise, it will be turned off.

Chapter 4 Bluetooth Low Energy

123

 if (central) {

 Serial.print("Connected to central: ");

 // print the central's MAC address:

 Serial.println(central.address());

 // while the central is still connected to peripheral:

 while (central.connected()) {

 // if the remote device wrote to the characteristic,

 // use the value to control the LED:

 if (switchCharacteristic.written()) {

 int val = switchCharacteristic.value();

 Serial.println(val);

 if (val>0) { // any value other than 0

 Serial.println("LED on");

 digitalWrite(ledPin, HIGH); // �will turn the

LED on

 } else { // a 0 value

 Serial.println(F("LED off"));

 digitalWrite(ledPin, LOW); // �will turn the

LED off

 }

 }

 }

Finally, print the message to the serial terminal if the BLE reader

disconnects.

 Serial.print(F("Disconnected from central: "));

 Serial.println(central.address());

 }

}

Our program is done. You can save this program as LED.

Chapter 4 Bluetooth Low Energy

124

�Testing Program
Now your Arduino program, LED, can be compiled and uploaded to the

Arduino Nano 33 BLE Sense. To test this program, you need a mobile

phone using the Android or iOS platform. This demo uses an Android

phone.

First, open Serial Monitor to see the output from the LED program.

Now you can open the nRF Connect for Mobile application from your

platform. You should see the BLE service on this application, as shown in

Figure 4-7. Tap CONNECT to connect to the Arduino Nano 33 BLE Sense.

Figure 4-7.  LED service shows in nRF Connect for Mobile
application

Chapter 4 Bluetooth Low Energy

125

After it is connected, you will see the form shown in Figure 4-8. You

can expand the BLE service characteristics. There are two properties:

READ and WRITE.

Tap WRITE. Next, set a value of 15 to turn on the LED, as illustrated in

Figure 4-9. Tap SEND to send this value. You should see the LED light up

on the Arduino Nano 33 BLE Sense. You also can send a value of 00 to turn

off the LED on the WRITE property, as shown in Figure 4-10.

Figure 4-8.  Display showing the BLE service characteristics

Chapter 4 Bluetooth Low Energy

126

Figure 4-9.  Writing a value of 15 to turn on the LED

Chapter 4 Bluetooth Low Energy

127

If you have already opened Serial Monitor, you will see the program’s

output events information, as shown in Figure 4-11.

Figure 4-10.  Writing a value of 00 to turn off the LED

Chapter 4 Bluetooth Low Energy

128

�Demo 3: Sensor Real-Time Monitoring
In this section, we will build a sensor real-time monitoring system over

BLE radio. We will create a BLE service that provides temperature and

humidity sensor data to the BLE reader. You can modify your previous

project, TempHumidity. The BLE reader will be notified if the sensor data

changes.

We will expose sensor data from the HTS221 chip over the BLE service

so the BLE reader can read this sensor data after it is connected to the

Arduino Nano 33 BLE Sense.

The next step is to build a Sketch program to implement the demo.

This example uses an Android mobile phone.

Figure 4-11.  Program output from LED

Chapter 4 Bluetooth Low Energy

129

�Writing Program
We need to create a new Arduino program to create a BLE service and

then broadcast the temperature and humidity sensor data to BLE readers.

We will create a BLE service with three characteristics, each of which will

expose temperature and humidity sensors.

To get started, open the Arduino software. First, call the required

libraries.

#include <ArduinoBLE.h>

#include <Arduino_HTS221.h>

Next, define the BLE service and three BLE characteristics. You need

a different UUID to apply these features. You must also define three

variables to hold sensor data.

BLEService sensorService("16150f38-e7a9-4fe1-ae08-

48464baf25b2");

BLEStringCharacteristic temperatureSensorLevel("ff99948c-18ff-

4ed8-942e-512b9b24b6da",

 BLERead | BLENotify,15);

BLEStringCharacteristic humiditySensorLevel("8084aa6b-6cae-

461f-9540-e1a5768de49d",

 BLERead | BLENotify,15);

// last sensor data

float oldTemperature = 0;

float oldHumidity = 0;

In the setup() function, initialize serial communication with a baud

rate value of 115200, HTS chip sensor, LED digital pin, and BLE module.

void setup() {

 Serial.begin(115200);

 while (!Serial);

Chapter 4 Bluetooth Low Energy

130

 if (!HTS.begin()) {

 �Serial.println("Failed to initialize humidity temperature

sensor!");

 while (1);

 }

 pinMode(LED_BUILTIN, OUTPUT);

 if (!BLE.begin()) {

 Serial.println("starting BLE failed!");

 while (1);

 }

Next, define the BLE service name and add it to the advertised service.

Then, add all BLE characteristics into the BLE service.

 BLE.setLocalName("TempHumidity");

 BLE.setAdvertisedService(sensorService);

sensorService.addCharacteristic(temperatureSensorLevel);

 sensorService.addCharacteristic(humiditySensorLevel);

 BLE.addService(sensorService);

Set the initial default data on all BLE characteristics using the

writeValue() function.

 temperatureSensorLevel.writeValue(String(oldTemperature));

 humiditySensorLevel.writeValue(String(oldHumidity));

Now we can start to advertise the BLE service by calling the BLE.

advertise() function. BLE readers will recognize this BLE server.

 BLE.advertise();

 �Serial.println("Bluetooth device active, waiting for

connections...");

}

Chapter 4 Bluetooth Low Energy

131

In the loop() function, we await the incoming BLE reader. Once the

BLE reader is connected, print the MAC address of BLE reader. Then, turn

on the LED.

void loop() {

 BLEDevice central = BLE.central();

 if (central) {

 Serial.print("Connected to central: ");

 Serial.println(central.address());

 digitalWrite(LED_BUILTIN, HIGH);

If the BLE reader is connected, there will be a BLEDevice object.

Perform a loop until the BLE reader is disconnected. Inside the loop, call

the updateTempHumidityLevel() function to update sensor data to the

BLE service.

 while (central.connected()) {

 //long currentMillis = millis();

 updateTempHumidityLevel ();

 delay(300);

 }

Turn off the LED after the BLE reader is disconnected.

 digitalWrite(LED_BUILTIN, LOW);

 Serial.print("Disconnected from central: ");

 Serial.println(central.address());

 }

}

For implementation of the updateTempHumidityLevel() function, read

the temperature sensor using HTS.readTemperature(). Read the humidity

sensor data using the HTS.readHumidity() function.

void updateTempHumidityLevel() {

Chapter 4 Bluetooth Low Energy

132

 float temp, hum;

 temp = HTS.readTemperature();

 hum = HTS.readHumidity();

Send temperature and humidity sensor data to the BLE service

using the writeValue() function, and perform this task for all BLE

characteristics.

 if (temp != oldTemperature) {

 temperatureSensorLevel.writeValue(String(temp));

 oldTemperature = temp;

 }

 if (hum != oldHumidity) {

 humiditySensorLevel.writeValue(String(hum));

 oldHumidity = hum;

 }

 Serial.print(temp);

 Serial.print('\t');

 Serial.println(hum);

}

Save this program as TempHumidityBLEService.

�Testing
Compile and upload the TempHumidityBLEService program into the

Arduino Nano 33 BLE Sense board. Next, use the nRF Connect for

Mobile application. Tap SCAN to display a list of BLE services in your

environment.

Chapter 4 Bluetooth Low Energy

133

Figure 4-12 shows the TempHumidity BLE service detected on the

nRF Connect for Mobile application. Tap CONNECT to connect the

TempHumidity BLE service.

After this is connected, you will see the properties and characteristics

of the TempHumidity BLE service as shown in Figure 4-13.

Figure 4-12.  Detecting the TempHumidity BLE service

Chapter 4 Bluetooth Low Energy

134

You can expand Unknown Service to see the BLE characteristics.

After it is expanded, you will see three BLE characteristics that represent

TempHumidity sensor data, displayed in Figure 4-14.

Figure 4-13.  Connected to the TempHumidity BLE service

Chapter 4 Bluetooth Low Energy

135

Tap the arrow array icon highlighted in Figure 4-14. That will show you

the sensor data from the temperature and humidity sensor. Figure 4-15 shows

these temperature and humidity sensor data from the Arduino Nano 33

BLE Sense. The sensor data are signified by circles in Figure 4-15.

Figure 4-14.  Opening BLE characteristics from the TempHumidity
BLE service

Chapter 4 Bluetooth Low Energy

136

You can continue to practice by creating various BLE services. You also

can build your own mobile application to consume BLE services.

�Summary
This chapter explored how to set up a BLE radio on the Arduino Nano

33 BLE Sense board. You also built Arduino programs by applying BLE

radio, starting by developing a hello world application. You also controlled

an LED over BLE radio. Finally, you exposed temperature and humidity

sensors to the BLE reader.

The next chapter covers how to implement embedded artificial

intelligence on the Arduino Nano 33 BLE Sense.

Figure 4-15.  Showing temperature and humidity sensors over the
TempHumidity BLE service

Chapter 4 Bluetooth Low Energy

137© Agus Kurniawan 2021
A. Kurniawan, IoT Projects with Arduino Nano 33 BLE Sense,
https://doi.org/10.1007/978-1-4842-6458-4_5

CHAPTER 5

Embedded Artificial
Intelligence
The Arduino Nano 33 BLE Sense with nRF8240 MCU enables us to perform

artificial intelligence (AI) applications. You can use the TensorFlow Lite

library to implement edge computing. This chapter explores how to get

started with TensorFlow Lite on the Arduino Nano 33 BLE Sense.

You will learn about the following topics in this chapter:

•	 Setting up the TensorFlow Lite library.

•	 Developing embedded AI applications.

•	 Building a gesture classification.

�Introduction
The Arduino Nano 33 BLE Sense has support for embedded AI using

TensorFlow. In this chapter, we explore how to get started with the

TensorFlow Lite library on the Arduino Nano 33 BLE Sense. All demos are

run on a Windows 10 machine.

https://doi.org/10.1007/978-1-4842-6458-4_5#DOI

138

�Setting Up TensorFlow Lite
To work with TensorFlow Lite, you should install it using Library Manager.

Type arduino_tensorflowlite in the search text box. You should find this library

as shown in Figure 5-1. Click Install to install the TensorFlow Lite library.

Next, you can build TensorFlow Lite applications on the Arduino Nano

33 BLE Sense board.

�Demo: Embedded Artificial Intelligence
TensorFlow is a machine learning framework. This library uses a deep

learning algorithm for implementation. Deep learning is a form of

supervised learning extended from neural networks. Machine learning

and deep learning are outside the scope of this book, but you can research

them if you are interested.

Figure 5-1.  Installing the TensorFlow Lite library

Chapter 5 Embedded Artificial Intelligence

139

TensorFlow Lite is a light version of the TensorFlow framework.

TensorFlow Lite is designed for small libraries and optimized for

embedded boards. For a simple demonstration, we use a program sample.

You can find program samples from the File menu by selecting Examples

➤ arduino_tensorflowlite. You should see hello_world. Click this program

sample to obtain the program code shown in Figure 5-2.

Figure 5-2.  A program from hello world and TensorFlow Lite

Chapter 5 Embedded Artificial Intelligence

140

Save this program as hello_world_tensorflowlite. After you save the

program, you can check the program folder. You should see some files

inside the program folder. Figure 5-3 shows some files from TensorFlow

Lite program. This program performs prediction for sinusoid forms.

Now you can compile and upload this program into the Arduino Nano

33 BLE Sense. The compiling process might take a few minutes because

this program will perform a training and then upload the program into the

Arduino Nano 33 BLE Sense.

After uploading the program, you can open Serial Plotter, where you

should see a graph of sinusoids. Figure 5-4 shows the program output from

hello_world_tensorflowlite.

Figure 5-3.  A list of files in the hello world TensorFlow Lite
program

Chapter 5 Embedded Artificial Intelligence

141

�Gesture Classification
In this section, we will build an AI program from scratch using TensorFlow

Lite on the Arduino Nano 33 BLE Sense. This project is modified from

https://github.com/arduino/ArduinoTensorFlowLiteTutorials. Our

scenario is to detect a gesture. For this demo, we want to detect a circle and

line gesture movement as shown in Figure 5-5.

Figure 5-4.  Program output with Serial Plotter from hello world
TensorFlow Lite program

Chapter 5 Embedded Artificial Intelligence

https://github.com/arduino/ArduinoTensorFlowLiteTutorials

142

Circle and line gestures are movement forms in vertical mode as

shown in Figure 5-5. This dataset is generated using the Arduino Nano

BLE Sense with IMU sensor. For the training process, we use Python to

perform machine learning computation with TensorFlow. You should

install Python and some required libraries on your computer to perform

the training dataset with TensorFlow.

To implement this project, you need to perform the following steps.

•	 Gathering a dataset.

•	 Building the model.

•	 Developing a classifier.

•	 Testing.

Figure 5-5.  Gesture model forms for circle and line

Chapter 5 Embedded Artificial Intelligence

143

�Gathering a Dataset
We use the Arduino Nano 33 BLE Sense to generate a dataset. Use the IMU

sensor to capture acceleration and gyroscope from your gesture. In this

project, we use a sample set of about 119 data values.

Open the Arduino software and create a new application. First, include

the Arduino_LSM9DS1 library. Define the sample data size as 119 and

define an acceleration threshold around 2.5.

#include <Arduino_LSM9DS1.h>

const float accelerationThreshold = 2.5; // threshold

const int numSamples = 119;

int samplesRead = numSamples;

In the setup() function, initialize serial communication and the IMU

sensor by calling the IMU.begin() function. Print a data header on the

serial terminal.

void setup() {

 Serial.begin(9600);

 while (!Serial);

 if (!IMU.begin()) {

 Serial.println("Failed to initialize IMU!");

 while (1);

 }

 // print the header

 Serial.println("aX,aY,aZ,gX,gY,gZ");

}

Chapter 5 Embedded Artificial Intelligence

144

In the loop() function, check the data length for samplesRead and

numSamples. If they have the same size, we calculate the sum of the

sensor data from acceleration including setting the absolute value. Read

acceleration sensor data using the IMU.readAcceleration() function.

void loop() {

 float aX, aY, aZ, gX, gY, gZ;

 // wait for significant motion

 while (samplesRead == numSamples) {

 if (IMU.accelerationAvailable()) {

 // read the acceleration data

 IMU.readAcceleration(aX, aY, aZ);

 // sum up the absolutes

 float aSum = fabs(aX) + fabs(aY) + fabs(aZ);

 // check if it's above the threshold

 if (aSum >= accelerationThreshold) {

 // reset the sample read count

 samplesRead = 0;

 break;

 }

 }

 }

If samplesRead size is below 119, proceed to read the data from the

IMU sensor. Then, print them to the serial terminal.

 while (samplesRead < numSamples) {

 // check if both new acceleration and gyroscope data are

 // available

 �if (IMU.accelerationAvailable() && IMU.

gyroscopeAvailable()) {

 // read the acceleration and gyroscope data

Chapter 5 Embedded Artificial Intelligence

145

 IMU.readAcceleration(aX, aY, aZ);

 IMU.readGyroscope(gX, gY, gZ);

 samplesRead++;

 // print the data in CSV format

 Serial.print(aX, 3);

 Serial.print(',');

 Serial.print(aY, 3);

 Serial.print(',');

 Serial.print(aZ, 3);

 Serial.print(',');

 Serial.print(gX, 3);

 Serial.print(',');

 Serial.print(gY, 3);

 Serial.print(',');

 Serial.print(gZ, 3);

 Serial.println();

 if (samplesRead == numSamples) {

 // add an empty line if it's the last sample

 Serial.println();

 }

 }

 }

}

Save this program as IMU_GetData, then compile and upload it into

the Arduino Nano 33 BLE Sense. To test our program to generate a dataset,

perform the following tasks.

•	 Press the Reset button on the Arduino Nano 33 BLE

Sense board.

•	 Open Serial Monitor.

Chapter 5 Embedded Artificial Intelligence

146

•	 Hold the board with your hand.

•	 Make a movement like the vertical circle shown in

Figure 5-5.

•	 Generate these data for at least 10 samples.

•	 Each sample data (119 data points) is separated by

Carriage Return, Line Feed (CRLF).

Figure 5-6 shows a result of the generated data set after the vertical

circle gesture is performed. Copy and paste these data to a text editor such

as Notepad in Windows.

Figure 5-6.  Sensor data after the circle gesture is performed

For the dataset in Figure 5-7, 31 data samples have been generated.

Save these data as circle.csv. Perform a similar task for the vertical line

gesture (see Figure 5-5). Copy and paste the result of generating the line

gesture to a text editor. Save the file as line.csv.

You now have two datasets, circle.csv and line.csv. You will use those

files for training in deep learning computation using TensorFlow.

Chapter 5 Embedded Artificial Intelligence

147

�Building the Model
In this section, we build a model in a computer. Performing a heavy

machine learning task on an embedded board is difficult because

hardware resources are limited. We therefore implement deep learning

computation on a computer.

First, your computer should have Python installed. This demo uses

Python version 3.8.x. You can download and install Python for your

platform from https://www.python.org/downloads/. For Windows, make

sure you checked that it is installed on PATH so the Windows command

prompt can recognize the Python commands. For Linux, you should install

Python pip with own platform. For instance, you can install pip in Ubuntu

using this command.

$ sudo apt install python3-pip

After Python is installed, you can open terminal or Windows command

prompts and type this command.

Figure 5-7.  Storing sensor dataset to a CSV file

Chapter 5 Embedded Artificial Intelligence

https://www.python.org/downloads/

148

$ python --version

$ pip --version

You should see Python and the pip version on your terminal.

Next, install Python libraries such as Pandas and Numpy. You should

also install Jupyter Notebook for the Python editor. To learn more about

Jupyter Notebook, visit the official website at https://jupyter.org/.

You can install all required libraries using the pip command. Type these

commands.

$ pip install pandas numpy matplotlib

$ pip install notebook

You also should install TensorFlow for Python on your computer. To do

so, you can type this command.

$ pip install tensorflow

This installation process takes a few minutes to complete. If you have

errors regarding a C++ compiler, you should install GCC on Linux/macOS

or Visual C++ on Windows.

Now you can navigate to any working folder where the circle.csv and

line.csv files are located. Then, run your Jupyter Notebook by typing this

command.

$ jupyter notebook

You should then see a browser open. You can then create a new

application and create a Python program inside this notebook. A complete

program can be found in the source codes for this book. Find the file

Gesture Training.ipynb. Put this file inside your working folder. After

opening it, you should have a form like the one shown in Figure 5-8.

Chapter 5 Embedded Artificial Intelligence

https://jupyter.org/

149

Now, let’s explain this program. First, load all required libraries on

Python.

import matplotlib

%matplotlib inline

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import tensorflow as tf

print(f"TensorFlow version = {tf.__version__}\n")

Next, plot the dataset. For instance, open the circle.csv file And use

the Matplotlib library to visualize the data. You should read the Matplotlib

documentation at https://matplotlib.org/3.3.1/contents.html.

Figure 5-8.  Jupyter Notebook runs a Python program

Chapter 5 Embedded Artificial Intelligence

https://matplotlib.org/3.3.1/contents.html

150

filename = "circle.csv"

df = pd.read_csv(filename,header=0)

index = range(1, len(df['aX']) + 1)

#plt.rcParams["figure.figsize"] = (20,10)

plt.plot(index, df['aX'], 'g.', label='x', linestyle='solid',

marker=',')

plt.plot(index, df['aY'], 'b.', label='y', linestyle='solid',

marker=',')

plt.plot(index, df['aZ'], 'r.', label='z', linestyle='solid',

marker=',')

plt.title("Acceleration")

plt.xlabel("Sample #")

plt.ylabel("Acceleration (G)")

plt.legend()

plt.show()

plt.plot(index, df['gX'], 'g.', label='x', linestyle='solid',

marker=',')

plt.plot(index, df['gY'], 'b.', label='y', linestyle='solid',

marker=',')

plt.plot(index, df['gZ'], 'r.', label='z', linestyle='solid',

marker=',')

plt.title("Gyroscope")

plt.xlabel("Sample #")

plt.ylabel("Gyroscope (deg/sec)")

plt.legend()

plt.show()

After running these scripts on Jupyter Notebook, you should see

a graph of the circle.csv file as shown in Figure 5-9. If you change the

filename value to line.csv, you will see a graph of line.csv, as shown in

Figure 5-10.

Chapter 5 Embedded Artificial Intelligence

151

After that, read all of the data from the circle.csv and line.csv files. Then

split the dataset for training and testing. To build a model, use TensorFlow

and Keras (https://keras.io/). You can see the following Tensor

architecture for your project.

build the model and train it

model = tf.keras.Sequential()

model.add(tf.keras.layers.Dense(50, activation='relu')) # relu

is used for performance

model.add(tf.keras.layers.Dense(15, activation='relu'))

model.add(tf.keras.layers.Dense(NUM_GESTURES,

activation='softmax')) # softmax is used, because we only

expect one gesture to occur per input

Figure 5-10.  Plotting dataset for the line gesture

Figure 5-9.  Plotting dataset for the circle gesture

Chapter 5 Embedded Artificial Intelligence

https://keras.io/

152

model.compile(optimizer='rmsprop', loss='mse', metrics=['mae'])

history = model.fit(inputs_train, outputs_train, epochs=600,

batch_size=1, validation_data=(inputs_validate, outputs_

validate))

These scripts take a few minutes to complete the training phase. Set

the epochs value to 600.

Next, you need to save your model into a file. Store the model in a

TensorFlow Lite form.

converter = tf.lite.TFLiteConverter.from_keras_model(model)

tflite_model = converter.convert()

Save the model to disk

open("gesture_model.tflite", "wb").write(tflite_model)

import os

basic_model_size = os.path.getsize("gesture_model.tflite")

print("Model is %d bytes" % basic_model_size)

These scripts generate a model file called gesture_model.tflite. You can

check it in the working folder. Next, convert the content of gesture_model.

tflite to a model.h file. Technically, you will convert a binary file to a hex

string. For Linux/macOS, you can run these scripts.

linux / mac

!echo "const unsigned char model[] = {" > model.h

!cat gesture_model.tflite | xxd -i >> model.h

!echo "};" >> model.h

import os

model_h_size = os.path.getsize("model.h")

print(f"Header file, model.h, is {model_h_size:,} bytes.")

print("\nOpen the side panel (refresh if needed). Double click

model.h to download the file.")

Chapter 5 Embedded Artificial Intelligence

153

If you have a problem for xxd, you should install it. For Debian/

Ubuntu, you can install it using these commands.

$ sudo apt update

$ sudo apt install xxd

Because Windows does not have an xxd application, we can use xxd

from the Vim application. Download and install Vim for Windows from

https://www.vim.org/download.php. After it is installed, you can copy

xxd.exe to a working folder. You should also change the cat command to a

type command in Windows. You can run these scripts.

windows

!echo const unsigned char model[] = { > model.h

!type gesture_model.tflite | xxd.exe -i >> model.h

!echo }; >> model.h

import os

model_h_size = os.path.getsize("model.h")

print(f"Header file, model.h, is {model_h_size:,} bytes.")

print("\nOpen the side panel (refresh if needed). Double click

model.h to download the file.")

Now you have a model.h file, which you can use for an Arduino Sketch

program. Figure 5-11 shows the content of the model.h file.

Chapter 5 Embedded Artificial Intelligence

https://www.vim.org/download.php

154

�Developing a Classifier
In this section, we will build an Arduino Sketch program to detect a circle

and line gestures. You can create a new program using Arduino. Save this

program as IMU_Classifier. Next, put model.h from our model into this

program folder.

For this demonstration, we modify the IMU_Classifier codes program

at https://github.com/arduino/ArduinoTensorFlowLiteTutorials. Set

the gesture models for circle and line.

...

// array to map gesture index to a name

const char* GESTURES[] = {

 "circle",

 "line"

};

...

Figure 5-11.  Content of model.h file

Chapter 5 Embedded Artificial Intelligence

https://github.com/arduino/ArduinoTensorFlowLiteTutorials

155

Save this program. Make sure that your model, the model.h file, is

already in this program folder. Compile and upload the program to the

Arduino Nano 33 BLE Sense. It takes a few minutes to complete this task.

�Testing
After you have uploaded the program, you can test it. Open Serial Monitor,

then make a vertical circle gesture. You can see in Figure 5-12 that the

confidence value for the circle is higher than the confidence level for a line

gesture.

Next, you can try to make a vertical line gesture. You can then see

from Figure 5-13 that the confidence level for a line is higher than the

confidence level for a circle gesture.

Figure 5-12.  Program output after performing a circle gesture

Chapter 5 Embedded Artificial Intelligence

156

If you make random gestures, check to see what the confidence

level values for circles and lines are. You can continue your practice by

developing some AI programs with TensorFlow Lite and the Arduino Nano

33 BLE Sense.

�Summary
This chapter addressed how to explore TensorFlow Lite on the Arduino

Nano 33 BLE Sense. We ran a program sample for hello world, and then

we created our own gesture classification with the TensorFlow Lite library

on the Arduino Nano 33 BLE Sense and with Python TensorFlow on a

computer.

Figure 5-13.  Program output after performing a line gesture

Chapter 5 Embedded Artificial Intelligence

157© Agus Kurniawan 2021
A. Kurniawan, IoT Projects with Arduino Nano 33 BLE Sense,
https://doi.org/10.1007/978-1-4842-6458-4

Index

A
Action-based conditionals, 29
addCharacteristic() function, 121
Analog I/O, 45–48
AnalogPlotting, 50
Analog sensor, 46
Analog sensor, plotting, 48–51
APDS.begin() function, 103, 105, 108
APDS.colorAvailable() function, 106
APDS.gestureAvailable()

function, 108
APDS.proximityAvailable()

function, 104
APDS.readColor(), 106
APDS.readProximity() function, 104
ArduinoBLE library, 112, 113, 120
Arduino Nano 33 BLE Sense board, 2

BLE radio, 111
I2C addresses, 77
IMU, 76
pinout, 43
reviewing, 3, 4
sensor chips, 76
specifications, 3, 4
temperature and relative

humidity sensor, 78–81
Arduino plug-in installation, 16
Arduino sketch, 21, 154

Arduino Web Editor
access, 14
plug-in installation, 16, 17
program, building, 18, 19
registering, account, 15

Arduino wiring, 49
Arithmetic operators, 29
Artificial intelligence (AI), 137

B
BARO.begin() function, 98
BARO.readPressure() function, 99
BLE.advertise() function, 122, 130
BLE.begin() function, 113, 121
BLE.setAdvertisedServiceUuid()

function, 114
Blinking LED, 9–14
Bluetooth Low Energy (BLE)

Hello World application, 113–120
LED controller

testing program, 124–128
writing program, 120–123

radio, 112
sensor real-time monitoring

system, 128–136
setting up, 112, 113

Break and continue
statements, 39–42

https://doi.org/10.1007/978-1-4842-6458-4#DOI

158

C
Circle and line gestures, 142, 154
Color sensor, 105–107
Conditional statement, 29–35

D
Data types, 24
Deep learning, 138
Development environment

Arduino software for Windows, 5
boards, 6
device manager in

Windows 10, 8
installation guidelines, 5
targeted boards for Arduino, 7

Digital input/output (I/O), 42–45
Digital microphone, 100–102
digitalRead() function, 44, 45
digitalWrite() function, 14, 44, 45
display.begin(), 88, 90
do..while statements, 35, 39

E
Embedded artificial intelligence

hello world TensorFlow Lite
program, 141

TensorFlow, 137
TensorFlow Lite, 138, 139

F
for statement, 35, 38, 39

G
Gesture classification

dataset gathering, 143–147
developing, classifier, 154
model, building, 147–154
testing, 155, 156

Gesture model forms, 142
Gesture sensor, 107, 108, 110

H
Hello Arduino BLE

sketch program, 113–115
testing program, 115–119

HelloBLE service, 117–119
hello world TensorFlow Lite

program, 140, 141
HTS221 sensor, 79, 81, 90, 91
HTS.begin() function, 79, 81
HTS.readHumidity()

function, 82, 91, 131
HTS.readTemperature()

function, 82, 91

I, J, K
I2C addresses, 77
IMU.accelerationAvailable(), 95
IMU.begin() function, 143
IMU_Classifier codes program, 154
IMU.gyroscopeAvailable()

function, 95, 96
IMU.readAcceleration()

function, 95, 144

INDEX

159

IMU.readGyroscope(), 95
IMU.readMagneticField()

function, 96
IMU sensor, 94–97
Inertial measurement

unit (IMU), 75
Inter-Integrated Circuit (I2C)

protocol
I2C addresses, 62
I2C interface, 62
PCF8591 ADC DAC AD/DA

module, 64
PCF8591 AD/DA Converter

module, 63
reading sensor-based-I2C

addresses, 69–74
scanning I2C address, 65–69

Internet of Things (IoT), 1

L
LED controller

testing program, 124–128
writing program, 120–123

loop() function, 6, 28, 34, 41, 45, 57,
61, 82, 91, 95, 99, 106, 108,
114, 122, 131, 144

Looping, 35–39

M
Machine learning, 138
Media access control (MAC)

address, 122

N
num_a variable, 34

O
OLED I2C display, 83

displaying temperature and
humidity sensor, 89, 91–93

I2C address, checking, 85, 86
libraries, setting up, 86
testing, 87–89
wiring, 84, 85

Online web editor, 15

P, Q
PCF8591 ADC DAC AD/DA

module, 64
PCF8591 AD/DA Converter

module, 63
Photo-voltaic cell, 69
pinMode(), 13
Plot_TempHumidity, 82
Plot_TempHumidity sensor

data, 83
Plotting sensor data

OLED I2C display
displaying temperature and

humidity sensor, 89, 91–93
I2C address, checking, 85, 86
libraries, setting up, 86
testing, 87–89
wiring, 84, 85

INDEX

160

Serial Plotter tool, 81
temperature and humidity

sensors, 82
Plotting sensor sound data, 51
Potentiometer, 63, 69
Pressure sensor, 97–99
print() function, 91
Proximity sensor, 103–105
Pulse-width modulation

(PWM), 53–58
Push button project, 43

R
readHumidity() function, 79
Reading sensor-based-I2C

addresses, 69–74
readTemperature() function, 79
Reset button, 27

S
Scanning I2C address, 65–69
Sensor chips, 76
Sensor-module-based I2C

interface, 62
Sensor programming

color sensor, 105–107
digital microphone, 100–102
gesture sensor, 107, 108, 110
IMU sensor, 94–97
pressure sensor, 97–99
proximity sensor, 103, 104

temperature and relative
humidity sensor, 78–81

Sensor real-time monitoring
system, 128–136

Serial communication, 52, 53, 81
Serial monitor tool, 26
Serial peripheral interface

(SPI), 4, 58–61
Serial Plotter tool, 50, 51, 81
Serial.println() functions, 25, 92
setColor() function, 56
setTextSize(), 91
setup() function, 6, 13, 23, 28, 61, 71,

81, 90, 94, 113, 121, 129, 143
Sketch programming

break and continue
statements, 39–42

conditional statement, 29–35
declaring variables, 23–28
looping, 35–39
main program, 22
operators, 29

SparkFun Electret Microphone
Breakout, 48, 49

SPI.transfer() function, 61
Switch program, 34

T
Temperature and relative humidity

sensor, 78–81
Temperature reading, 47
TempHumidity BLE service, 133–136
TempHumidity program, 81

Plotting sensor data (cont.)

INDEX

161

TensorFlow, 138
TensorFlow Lite, 138, 139, 141
Thermistor, 69
TMP36 module, 45

U
updateTempHumidityLevel()

function, 131

V
value() function, 121, 122, 130

W, X, Y, Z
while statement, 35, 39
Wire.beginTransmission(), 72
Wire.endTransmission(), 72
Wireless personal area network

(WPAN), 2
Wire.read() function, 72
Wire.requestFrom()

function, 72
Wire.write(), 72
writeValue()

function, 121, 132

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Setting up a Development Environment
	Introduction
	Reviewing the Arduino Nano 33 BLE Sense Board
	Setting up a Development Environment
	Hello Arduino: Blinking LED
	Using Arduino Web Editor
	Registering an Arduino Account
	Installing the Arduino Plug-in
	Building an Arduino Program

	Summary

	Chapter 2: Arduino Nano 33 BLE Sense Board Development
	Introduction
	Basic Sketch Programming
	Main Program
	Declaring Variables
	Operators
	Conditional Statement
	Looping
	Break and Continue

	Digital I/O
	Analog I/O
	Plotting an Analog Sensor
	Serial Communication
	Pulse-Width Modulation
	Serial Peripheral Interface
	Inter-Integrated Circuit
	Scanning I2C Address
	Reading Sensor-Based-I2C Addresses

	Summary

	Chapter 3: Sensor Programming
	Introduction
	Temperature and Relative Humidity
	Plotting Sensor Data
	Plotting Sensor Data Using an OLED I2C Display
	Wiring for the OLED I2C Display
	Checking the I2C Address of the OLED I2C Display
	Setting Up the OLED I2C Display Library
	Testing the OLED I2C Display
	Displaying Temperature and Humidity Sensor

	IMU Sensor
	Pressure Sensor
	Digital Microphone
	Digital Proximity, Ambient Light, RGB, and Gesture Sensor
	Proximity Sensor
	Color Sensor
	Gesture Sensor

	Summary

	Chapter 4: Bluetooth Low Energy
	Introduction
	Setting up Bluetooth Low Energy
	Demo 1: Hello Arduino BLE
	Writing Sketch Program
	Testing Program

	Demo 2: Controlling an LED with BLE
	Writing Program
	Testing Program

	Demo 3: Sensor Real-Time Monitoring
	Writing Program
	Testing

	Summary

	Chapter 5: Embedded Artificial Intelligence
	Introduction
	Setting Up TensorFlow Lite
	Demo: Embedded Artificial Intelligence
	Gesture Classification
	Gathering a Dataset
	Building the Model
	Developing a Classifier
	Testing

	Summary

	Index

