Arduino Projects

Vol-I ,
Manoj R.Thakur

—l O @ O @ —

> il . oE[co]80S
o

) & []

O
10 338

T,
e

o
>

With Proteus Simulation Files, Don't justread it Try it.....

Il Inl??n e .

aTaRa'alaal o FYa"

Circuits4dyou.com

Arduino Projects Vol-I

With Practical Exercise

Manoj R. Thakur
6/22/2016

Preface

I completed Master Degree in Electronics year 2008, I
worked 5 years in MIT as Assistant Professor in Electronics
Department and found that many students are struggling for
knowing basic things and they are many times get bombarded with
lot of information that makes them confuse, so I decided to write a
book that focus more on practical approach and keep it like read
less and experiment more. My first e-book Measurement Made
Simple with Arduino is the result of my experiences that got great

success. Many found that its basis for all measurement needs.

@ Measurement
!. 9 Made Simple with

® °C Arduino
pH

This book idea is to give concept behind making use of
measurement and control knowledge to apply in day to day
practical application. Here we have provided all the necessary data
to make Arduino projects with keeping in mind read less do more.
The best thing about this book is it’s not just read or make, you
can actually simulate before you make it. Most of the projects are
provided with “Proteus” simulation files that are available on my
website circuits4you.com.

The book layout is kept very simple like experiment notes
1. Discuss the idea of project
2. Sensor discussion

http://circuits4you.com/
http://circuits4you.com/
http://circuits4you.com/

3. Circuit Design with simulation file link
4. Programming with hex file link
5. Conclusions

PCB Layout and other resources are given in last chapter.
Do not forget to see it.

This book is intended to focus on making various day to day
life problem solving projects using Arduino. It is kept short and
specific to the title of the book. We are using only Arduino Uno for
the examples other boards can be used with same code in most
cases. This is first book of Arduino Project series.

Contents

1. GETTING STARTED WITH ARDUINO

1.1 ARDUINO INTRODUCTION
1.2 ArRpuiNo IDE BASICS
1.3 ARDUINO PROGRAMMING
1.4 ARDUINO PIN-OUTS

2. ARDUINO BASED DIGITAL CODE LOCK

2.1 INTRODUCTION
2.2 DicitalL CobpE L.ock CIRCUIT
2.3 DiciTal. CobpEk [.ock ARDUINO CODE

3. ARDUINO TEMPERATURE CONTROLLER

3.1 INTRODUCTION
3.2 TEMPERATURE CONTROLLER CIRCUIT
3.3 TEMPERATURE CONTROLLER ARDUINO CODE

4. ARDUINO OBJECT COUNTER

4.1 INTRODUCTION
4.2 OBJECT COUNTER CIRCUIT
4.3 OBJECT COUNTER ARDUINO CODE

5. ARDUINO DC DIGITAL VOLTMETER

5.1 INTRODUCTION
5.2 DiGITAL VOLTMETER CIRCUIT
5.3 DicITAL VOLTMETER ARDUINO CODE

6. ARDUINO WATER LEVEL CONTROLLER

6.1 INTRODUCTION
6.2 WATER LEVEL CONTROLLER CIRCUIT
6.3 WATER LEVEL CONTROLLER ARDUINO CODE

7. AUTOMATIC LIGHT CONTROLLER

7.1 INTRODUCTION
7.2 AUTOMATIC L.IGHT CONTROLLER CIRCUIT
7.3 AUTOMATIC L.IGHT CONTROLLER ARDUINO CODE

8. SOLAR POWER MONITOR

8.1 INTRODUCTION
8.2 SoL.AR POowER MONITOR CIRCUIT
8.3 SorL.AR PowER MoNITOR CODE

9. ULTRASONIC DISTANCE METER

9.1 INTRODUCTION
9.2 UrtrASsONIC DistTANCE METER CIRCUIT
9.3 UrtrAasonNIC DistTANCE METER ARDUINO CODE

10. DIGITAL TIMER

10.1 INTRODUCTION
10.2 DiGITAL TIMER CIRCUIT
10.3 DicitaL TIMER ARDUINO CODE

11. AUTOMATIC IRRIGATION SYSTEM

11. 1 INTRODUCTION
11.2 AuTtoMATIC IRRIGATION SYSTEM CIRCUIT
11.3 AuTtoMATIC IRRIGATION SYSTEM ARDUINO CODE

12. MOOD LAMP

12.1 INTRODUCTION
12.2 Moobp Lamp CIRCUIT
12.3 Moobp L.amp ARDUINO CODE

13. BLUETOOTH BASED HOME AUTOMATION

13. 1 INTRODUCTION
13.2 BLUETOOTH BASED HOME AUTOMATION CIRCUIT
13.3 BLUETOOTH BASED HOME AUTOMATION ARDUINO CODE

14. TRAFFIC LIGHT CONTROLLER

14.1 INTRODUCTION
14.2 TRAFFIC LLIGHT CONTROLLER CIRCUIT
14.3 TrRAFFIC LLIGHT CONTROLLER CODE

15. RPM METER

15.1 INTRODUCTION
15.2 RPM METER CIRCUIT
15.3 RPM METER ARDUINO CODE

15. REFERENCES 67

15.1 StmurLATION AND HEX FILES 67

Disclaimer

All do-it-yourself activities involve risk, and your safety is
your own responsibility, including proper use of equipments and
safety gear, and determining whether you have adequate skill and
experience, Some of the resources used for these projects are
dangerous unless used properly and with adequate precautions,
including safety gear. Some illustrative photos do not depict safety
precautions or equipment, in order to show the project steps more
clearly. The projects are not intended for use by children.

Use of the instructions and suggestions is at your own risk.
Circuitsdyou.com and Author of this book (Manoj R. Thakur)
disclaims all responsibility for any damage, injury, or expense. It is
your responsibility to make sure that your activities comply with all
applicable laws.

1. Getting Started with Arduino

1.1 Arduino Introduction

Arduino is an open-source computer hardware and software
company, project and user community that designs and
manufactures microcontroller-based kits for building digital devices
and interactive objects that can sense and control the physical
world.

1.2 Arduino IDE basics

Let’s see how to connect your Arduino board to the
computer and upload your first sketch.

Get an Arduino board and USB cable
In this book, we assume you're using an Arduino Uno. For
other Arduino boards most of the things are same.

You also need a standard USB cable (A plug to B plug): the kind
you would connect to a USB printer, for example. (For the Arduino
Nano, you'll need an A to Mini-B cable instead.)

Figure 1.1: Arduino Uno and USB Cable

Download the Arduino Software (IDE)

Get the latest version from website www.arduino.cc
download page. When the download finishes, unzip the downloaded
file.

Connect the board

The Arduino Uno, Mega, Duemilanove and Arduino Nano
automatically draw power from either the USB connection to the
computer or an external power supply. If you're using an Arduino
Diecimila, you'll need to make sure that the board is configured to

http://www.arduino.cc/

draw power from the USB connection. The power source is selected
with a jumper, a small piece of plastic that fits onto two of the three
pins between the USB and power jacks. Check that it's on the two
pins closest to the USB port.

Connect the Arduino board to your computer using the USB cable.
The green power LED (labeled PWR) should go on. For new board
(not programmed yet) Yellow LED (Near Pin 13) will blink.

Install the drivers
Installing drivers for the Arduino Uno or Arduino Mega
2560 with Windows 7, Vista, or XP:

Plug in your board and wait for Windows to begin its driver
installation process. After a few moments, the process will fail,
despite its best efforts, Driver files are located in Folder
“Arduino\Drivers” select appropriate file and install the drivers.

After successful driver installation you will find new com port. You
can check correct com port number from device manager.

1.3 Arduino Programming

Double-click the Arduino application (arduino.exe) you
have previously downloaded. (Note: if the Arduino Software loads
in the wrong language, you can change it in the preferences dialog.)

Open the blink example
Open the LED blink example sketch: File > Examples >01.Basics

> Blink.

& Blink | Arduino 1.65 = O b o

File Edit Sketch Tools Help

Figure 1.2: Arduino Blink Example

Select your board
You'll need to select the entry in the Tools > Board menu that

corresponds to your Arduino.

& Blink | Arduino 1.6.5

File Edit Sketch Tools Help
Auto Format Ctri+T
Archive Sketch
Fix Encoding & Reload
Serial Monitor Ctrl+Maiusc+M

Board: "Arduino Una™ | Boards Manager...

Arduino AVR Boards

Programmer: "AVRISP mkll" 11' i::ufnu ':jun
Burn Bootloader H'_m he i o
S/ the setup funtTion LOnS ONCE WOER YOO pPIesS IeSEL O DOWSL L Arduino Duemilanove or Diecimila
wald, s=taply 1 Arduino Nana
{f lnicialize digical pin 13 a3 an OUGHUG.)
Mode (13, QUTPUL) : Arduino Mega or Mega 2560
Arduing Mega ADK
Arduino Leonardo

Arduino Micro
ey L L e SR
gitalWeite (13, LOW): '/ turn the LED off by making the e Arduino Mini
delay (1000): f¢ wait for a second Arduino Ethernet
J Arduino Fio
Arduino BT
LilyPad Arduino USE
LilyPad Arduing
Arduino Pro or Pro Mini
Arduino NG or older
Arduino Robot Control
Arduino Robot Motor
Arduino Gemma

Arduino Esplora

d1gl

Figure 1.3: Arduino Board Selection

Select your serial port

Select the serial device of the Arduino board from the Tools
>> Port menu. This is likely to be COM3 or higher (COM1 and
COM2 are usually reserved for hardware serial ports). To find out,
you can disconnect your Arduino board and re-open the menu; the
entry that disappears should be the Arduino board. Reconnect the
board and select that serial port. Or look into device manager.

Upload the program

Now, simply click the "Upload" button in the environment.
Wait a few seconds - you should see the RX and TX led’s on the
board flashing. If the upload is successful, the message "Done
uploading." will appear in the status bar.

! ! upload

Figure 1.4: Arduino Upload Button Location

A few seconds after the upload finishes, you should see the pin 13
(L) LED on the board start to blink (in orange). If it does,
congratulations! You've gotten Arduino up-and-running.

1.4 Arduino Pin-outs
Arduino Nano

ARDUINO

PINOUT DHAGRAM

Oin version 2
Analeg Pind are ievered

£ AlSAT ATewAl

[- oow H eowa Heos HERH €
w H scaan Hoo HERH 7

G H o R HmaHERH 8
B oon H nowe HeuHERH u

a

EI
& e
5 e
o e
T =
B e
i |-
Wt

-

I

Figure 1.5: Arduino Nano Pinout diagram

Arduino Uno

v e sns (500 HEEH Tiva H w0 .[: 8
13
U e | h F H
“d WA
Ly e Roes :
i _”..._.._wu..n“ . g
L a
e mwﬂ_] o5 } [FINIDE ;- 93 SN g
EEl [w5 | | SNEM) __H.T: (Sl
i

170 {FUNTH-) o H B pod
P————{LNI M~ @l = T |-1Dd

._."... HINDd= UMD =S =l
[(srao HEWEIR-STINTX- TINT o B HEOd

[{BEINI3d- 8L @ |-pod

£ {IZINT3d- T4 5
..n,.m | o {EEANTI— NIV 9 o4
=1 [eznndr mav £ Hiod

{@Nrd b+ o ST Hd i

_._H_

ARDUIND

{1353 |

afipgoed auyua Jof
vepar Toa 2injosqy E

ooy " o _ .
2 8
W m = ! w0 | i b B e{on}{ o = om MM
WYHDVIO LNONId _L 3 "o HER- o e Hal (i w HEl
m [} i wen H oo H o ool BN v e - o OO
* = [i] e e I_HWI: Lo
& (R oWl WA - T | DR
ﬂ E a A TE
m - aj._ i TI
ONINAYY 8 0 (o~ R (o (i
m . e (B o {5+ o~ -
(& g (D0 - v o {5 o
g O { o} ()~ - (o) G0 G0
(=] ._U.._ﬂ. {wai = (I8 B._ - ._H.
_IsHEtmE. o B e e |

Arduino UNO Pinout diagram

Figure 1.6

Note: Analog pins can be used as digital IOs the numbering is AO to

14 to 19 respectively.

A5 =

Arduino Pro Mini

e F

uTg Forvuy SN
UFd TPT35

v .

wamaod S

Jar .

SURd Afanpsniaxa mﬂ!&@

EIW (S5 SO0\ @O T § O &/ \ IR0 e [6
BN oW oo D0\ e 05 L . § = | OGN e (ED | 8 _J
T OSTH) v [FEETET—@ | %, a0 @1 €08 TNV i -
1 [E9)505 | s [580 EF—@ 5 oQ @\ /90 LY o 00 MEN
o o) e - (@ —® 3 Q) @\~ E0) T e g0
[vsy] Y <o (T F—® 02 « . @— v el eoo %]
HER B oo ()| e e ot Q) @\~ (B0 EIND eooa G220
fevz) N v (€36 EF——® worveiost somou) @——{a 2060 G v =2
By o TR0 —
rian (353 90d | G—e w !] () 9 1357 v
E—— = = @——{3) 0G4 axy s [6
T3P B ot A N BEEF—— | OR W 11y 3o o B @ ——403/00060 O i -

#§E§f§§@m$IijaP|¢a

s O 00

I ‘puaeog auy
pajeTndadun ButATddns T v

ARLIBIEY TOL4

SR

Figure 1.7: Arduino Pro Mini Pinout diagram

2. Arduino based digital code lock

2.1 Introduction

Digital code locks are most common on security systems. An
electronic lock or digital lock is a device which has an electronic
control assembly attached to it. They are provided with an access
control system. This system allows the user to unlock the device
with a password. The password is entered by making use of a
keypad. The user can also set his password to ensure better
protection.

In this project major components include a keypad, LCD and the
controller Arduino. This article describes the making of an
electronic code lock using arduino.

What you will learn?

1. How to connect keypad and LCD to arduino?

2. How to take keypad input?

3. Comparing keypad input?

4. Limiting the input?

5. How to make complete digital code lock application?

Components Required
1. Arduino Uno

2. 16x2 LCD Display

3. 4x4 keypad

4. Relay

5. 1K Resistors Qty. 3

6. BC548

7. LEDs

2.2 Digital Code Lock Circuit

Code lock circuit is constructed around Arduino Uno, using LCD
and keypad. LCD and keypad forms the user interface for entering
the password and displaying related messages such as “Invalid
password”, “Door open”, etc. Two LEDs are provided to indicate
the status of door whether it is locked or open. To operate latch/lock
we are using Relay which can be connected to the electronic
actuator or solenoid.

LCD
T LAACIEL,

- -
220 230 g A
. . R3 B8E o3, szuszsss
‘9@ . =felel spelel aeplelzlels
ﬁ o 4 |m i

MGITAL {-Feea)

R4 .
R] .4
BCASE

EFEEFEEEEFEEEE

ﬂ

p— o
)

{

circu itsdyou, com
EEEEEEEEEEEEE N

AMALOG IM

Figure 2.1: Digital Code Lock Circuit

2.3 Digital Code Lock Arduino Code

Program is constructed using two libraries “LiquidCrystal”
and “Keypad”. Program have different modules, Setup, Loop, Lock.
In setup we initialize all the IO connections and LCD, Keypad. In
main loop we are taking pressed keys in array “code[]”, Once the
four digits are entered we stop accepting keys. We are using
numeric keys and ‘C’ , “=" key. ‘C’ key is used to lock or clear the
display incase wrong password is entered. We can hide the entered
password by putting Star character ‘*’.

After entering password ‘=’ key acts as ok. If password is
correct door is kept unlocked for few seconds. If it is incorrect
message will be displayed.

/ 3k

circuits4you.com

Digital Code Lock Demo
*/

#include <Keypad.h>
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd (9, 8, 7, 6, 5, 4);

const byte ROWS = 4; //four rows
const byte COLS = 4; //four columns
//define the cymbols on the buttons of the keypads
char hexaKeys [ROWS][COLS] ={
{'7"'8"'9"'/'}’
{4,5,6,*}),
{'1','2','3')"'},
{'C"'O"':"'-l_'}
b

byte rowPins [ROWS] = {3, 2, 19, 18}; //connect to the row pinouts of
the keypad

byte colPins [COLS] ={17, 16, 15, 14}; //connect to the column pinouts
of the keypad

//initialize an instance of class NewKeypad
Keypad customKeypad = Keypad (makeKeymap (hexaKeys), rowPins,
colPins , ROWS , COLS);

const int LED_RED =10; //Red LED
const int LED_GREEN =11; //Green LED
const int RELAY =12; //Lock Relay or motor

char keycount =0;
char code [4]; //Hold pressed keys

//::
// SETUP
//::
void setup (){

pinMode (LED_RED , OUTPUT);
pinMode (LED_GREEN , OUTPUT);
pinMode (RELAY , OUTPUT);

// set up the LCD's number of columns and rows:
lcd . begin (16, 2);
// Print a message to the LCD.
lcd . print ("Password Access:");
lcd . setCursor (0,1); /Move coursor to second Line
// Turn on the cursor
lcd . cursor ();
digitalWrite (LED_GREEN , HIGH); //Green LED Off
digitalWrite (LED_RED ,LOW); //Red LED On
digitalWrite (RELAY , LOW); //Turn off Relay (Locked)

}

// LOOP
//::
void loop (){

char customKey = customKeypad . getKey ();

if (customKey && (keycount <4) & & (customKey !='=") & &
(customKey !='C")){
/Ncd.print(customKey); //To display entered keys
lcd . print (**'); //Do not display entered keys
code [keycount]= customKey ;
keycount ++;

}

if(customKey =='C') //Cancel/Lock Key is pressed clear display and
lock

{
Lock (); //Lock and clear display

}

if(customKey =='=") //Check Password and Unlock
{
if((code [0]=="1") & & (code [1]=="2") & & (code [2]=="3") &&
(code [3]=="4")) //Match the password. Default password is “1234”
{
digitalWrite (LED_GREEN , LOW); //Green LED Off
digitalWrite (LED_RED , HIGH); //Red LED On
digitalWrite (RELAY , HIGH); //Turn on Relay (Unlocked)
lcd . setCursor (0,1);
lcd . print ("Door Open ");
delay (4000); //Keep Door open for 4 Seconds
Lock ();
}

else

{

lcd . setCursor (0,1);

lcd . print ("Invalid Password"); //Display Error Message
delay (1500); //Message delay

Lock ();

void Lock ()
{
lcd . setCursor (0,1);
lcd . print ("Door Locked ");
delay (1500);
lcd . setCursor (0,1);
lcd . print (" "); //Clear Password
lcd . setCursor (0,1);
keycount =0;
digitalWrite (LED_GREEN , HIGH); //Green LED Off
digitalWrite (LED_RED, LOW); //Red LED On
digitalWrite (RELAY , LOW); //Turn off Relay (Locked)

Conclusion
This code demonstrates how to construct digital code lock and

its application using arduino.
We have used almost all the IO lines of arduino, now you know that

analog lines have digital numbers from 14 to 19.

3. Arduino Temperature Controller

3.1 Introduction

Digital Temperature Controller using arduino, here we are using
arduino as main controller, this temperature controller controls the
temperature of any heating device with given set points. It displays
state of the heating element either on or off and current temperature
on LCD.

What you will learn?

1. How to connect keys and LCD to arduino?
2. How to take key input?

3. How to Read Temperature sensor LM357?
4. Controlling device as per set point.

Components Required
Arduino Uno

16x2 LCD Display

Keys

Relay

1K, 230 Ohm Resistors
BC548

LEDs

LM35 Temperature Sensor

N hA W=

3.2 Temperature Controller Circuit

Circuit is constructed using Arduino Uno and LM35 temperature
sensor and other components. We are using 16x2 LCD to display
current temperature and set points. LM35 gives analog output
proportional to the temperature which is given to Arduino analog
input AO. Which is then compared with set points if it is more than
set point, It means the temperature is more so we turn off the
heating element such as heater which is connected to relay output. If
temperature is less we turn on the relay (heater). We are displaying
status of heater on off on the LED and LCD also. Two tactile
switches are used to set the temperature set point.

LM35
&
=3

Tn

Figure 3.1: LM35 Pin Diagram

=T
no

LE-GREEN

LCDA
ke Set Point

: |.I'.

DIGITAL {-Pamd)

|'_. ol ZEIe OO
circuitsdyou.com
EEEEEEEREEEEERES
K —
ANALOG IN

Figure 3.2: Temperature Controller Circuit

3.3 Temperature Controller Arduino Code

Program is constructed using one library “LiquidCrystal”. Program
have different modules, Setup, Loop. In setup we initialize all the
IO connections and LCD, Keypad. In main loop we are taking set
point inputs and constantly measure current temperature and
compare it with set points. If it is more than set point turn off heater,
else turn on heater. You can add some hysteresis.

/>I<

circuits4dyou.com

Digital Temperature Controller
*/
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd (9, 8, 7, 6, 5, 4);

const int LED _RED =10; //Red LED
const int LED GREEN =11; //Green LED
const int RELAY =12; //Lock Relay or motor

//Key connections with arduino
const int up_key =3;

const int down_key =2;

int SetPoint =30;

//::
// SETUP
//::
void setup (){

pinMode (LED_RED , OUTPUT);
pinMode (LED_GREEN, OUTPUT);
pinMode (RELAY , OUTPUT);
pinMode (up_key , INPUT);

pinMode (down_key , INPUT);

//Pull up for setpoint keys
digital Write (up_key , HIGH);
digitalWrite (down_key , HIGH);

// set up the LCD's number of columns and rows:

lcd . begin (16, 2);

// Print a message to the LCD.

lcd . print ("circuits4you.com");

lcd . setCursor (0,1); /Move coursor to second Line

lcd . print ("Temp. Controller");

digitalWrite (LED_GREEN, HIGH); //Green LED Off
digitalWrite (LED_RED , LOW); //Red LED On
digitalWrite (RELAY , LOW); //Turn off Relay
delay (2000);

void loop (){
double Temperature = ((5.0/1024.0) * analogRead (A0)) * 100;
//10mV per degree 0.01V/C. Scalling

lcd . setCursor (0,0);
lcd . print ("Temperature:"); //Do not display entered keys
led . print (Temperature);

//Get user input for setpoints
if(digitalRead (down_key)== LOW)
{
if(SetPoint >0)
{
SetPoint --;

}

}
if(digitalRead (up_key)== LOW)
{

if(SetPoint <150)

{

SetPoint ++;

}

}

//Display Set point on LCD
lcd . setCursor (0,1);
lcd . print ("Set Point:");
lcd . print (SetPoint);
lcd . print ("C ");

//Check Temperature is in limit

if(Temperature > SetPoint)

{
digitalWrite (RELAY , LOW); //Turn off heater
digitalWrite (LED_RED , HIGH);
digitalWrite (LED_GREEN, LOW); //Turn on Green LED

}

else

{

digitalWrite (RELAY , HIGH); //Turn on heater

digitalWrite (LED_GREEN , HIGH);

digitalWrite (LED_RED , LOW); //Turn on RED LED
}

delay (100); //Update at every 100mSeconds

Conclusion
This code demonstrates how to construct digital temperature

controller using arduino.
We have used combination of LCD and Temperature sensor LM35

to make simple temperature controller using Arduino.

4. Arduino Object Counter

4.1 Introduction

Object counting is required in many applications. Industrial
production counters, part counters and many more. This project is
constructed using Arduino Uno, 7-Segment Display, 74HC595 shift
register. We are using two switches to show the up and down count.

What you will learn?

1. How to connect 7-Segment Display to Arduino?
2. How to take key input?

3. Use of shift register to reduce 10s.

Components Required

1. Arduino Uno

2. 4 digit 7-segment Display Common Cathode.
3. Keys

4. 1K Resistors

5. 75HC595

4.2 Object Counter Circuit
Main components of object counter circuit are 4 digit 7-Segment
display, Arduino Uno, 74HC595.

D1 A F D2 D3 B

12 " 10 9 8 7
L1 | | I |
® . . 5
T | | I |
0 2 3 4 5 6
E D decimal C G D4

Figure 4.1: 4 Digit 7-Segment Display Pin Diagram

ARDA —a

circuitedyou.com

SLEREEREE

(R~ T LIS

M S0 TN
IEEESEEFEREENED
AEEEEDEERRE R

Figure 4.2: Object Counter Circuit

4.3 Object Counter Arduino Code

Program is constructed using “TimerOne” library. Program have
different modules, Setup, Loop. In setup we initialize all the 10
connections and Timer, Display. In main loop we are taking key
inputs and constantly updating display to show counter value.

/>I<
Digital Object Counter using 4-Digit 7-segment Display
www.circuits4you.com

*/

#include <TimerOne.h>

//Define 74HC595 Connections with arduino
const int Data =7;

const int Clock =8;

const int Latch =6;

const int SEGO =5;
const int SEG1 =4;
const int SEG2 =3;
const int SEG3 =2;

//Up down keys connection
const int up =10;
const int down =9;

int cc =0;

char Value [4];

const char SegData []=
{0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

int Count =0;

void setup () {
// initialize the digital pin as an output.
Serial . begin (9600);
pinMode (Data , OUTPUT);
pinMode (Clock , OUTPUT);
pinMode (Latch , OUTPUT);
pinMode (SEGO, OUTPUT);
pinMode (SEG1, OUTPUT);
pinMode (SEG2 , OUTPUT);
pinMode (SEG3, OUTPUT);

pinMode (up , INPUT); //Keys or proxmity sensor
pinMode (down , INPUT);

digitalWrite (up , HIGH); //Pull up for keys
digital Write (down , HIGH);

//Initialize Display Scanner
cc =03
Timer1 . initialize (50000); // set a timer of length 100000
microseconds (or 0.1 sec - or 10Hz => the led will blink 5 times, 5 cycles
of on-and-off, per second)
Timer1 . attachInterrupt (timerlsr); // attach the service routine here

}
//::
/l Loop
//::
void loop () {

char cnt [4];

if(digitalRead (down)== LOW)
{

while(digitalRead (down)== LOW); //Wait until low
if(Count >0) //Minimum Counting to zero
{
Count --;
}
}

if(digitalRead (up)== LOW)
{
while(digitalRead (up)== LOW); //Wait until low
if(Count <10000) //Max counting 9999
{
Count ++;
}

}
//Display Count on Segments

sprintf (cnt ,"%04d", Count); //We get ASCII array in Volt
Serial . println (Count); //Print Count on Serial for debug

Value [0]= cnt [0] & 0x0F; //Anding with 0xOF to remove upper nibble

Value [1]= cnt [1] & 0x0F; //Ex. number 2 in ASCII is 0x32 we want
only 2

Value [2]= cnt [2] & 0x0F;

Value [3]= cnt [3] & 0x0F;

delay (50);
}
//::
/l Generates Digit
//::

void DisplayDigit (char d)
{

inti;

for(i=0;1i<8;i++) //Shift bit by bit data in shift register

if((d & 0x80)==0x80)
{
digitalWrite (Data , HIGH);
}
else
{
digitalWrite (Data , LOW);

}
d=d<<I;

//Give Clock pulse
digitalWrite (Clock , LOW);
digitalWrite (Clock , HIGH);
}
//Latch the data
digitalWrite (Latch , LOW);
digitalWrite (Latch , HIGH);

/l TIMER 1 OVERFLOW INTTERRUPT FOR

void timerlsr ()

{
CC ++;
if(cc ==5) //We have only 4 digits
{cc=1;}
Scanner ();
TCNTO =0xCC;
}

/l SCAN DISPLAY FUNCTION

void Scanner ()
{
switch (cc) //Depending on which digit is selcted give output
{
case 1:
digitalWrite (SEG3 , HIGH);
DisplayDigit (SegData [Value [0]]);
digitalWrite (SEGO , LOW);
break;
case 2:
digitalWrite (SEGO , HIGH);
DisplayDigit (SegData [Value [1]]);
digitalWrite (SEG1, LOW);
break;
case 3:
digitalWrite (SEG1 , HIGH);
DisplayDigit (SegData [Value [2]]);
digital Write (SEG2 , LOW);
break;
case 4:
digitalWrite (SEG2 , HIGH);
DisplayDigit (SegData [Value [3]]);
digitalWrite (SEG3 , LOW);
break;

Conclusion

This code demonstrates how to construct digital object counter
using arduino.

You can try with different sensor such as IR proximity to make
counting of object passing in front of it. Here we used shift register
to reduce IO requirement. You can try 74L.S48 7-segment decoder
also. Shift register gives benefit of control of each segment. You can
display some alphanumeric characters and negative sign.

5. Arduino DC Digital Voltmeter

5.1 Introduction

A voltmeter is an instrument used for measuring electrical
potential difference between two points in an electric circuit.
Analog voltmeters move a pointer across a scale in proportion to the
voltage of the circuit; digital voltmeters give a numerical display of
voltage by use of an analog to digital converter. We are using
internal ADC of Arduino to make Digital Voltmeter capable to
display O to 5V. You can increase its input voltage capacity by using
voltage divider circuit.

What you will learn?

1. How to connect 7-Segment Display to Arduino?
2. How to read analog input?

3. Use of shift register to reduce 1Os.

4. Measurement of DC voltage using Arduino.

Components Required

1. Arduino Uno

2. 4 digit 7-segment Display Common Cathode.
3. Variable Resistor.

4. 1K Resistors

5. 75HC595

5.2 Digital Voltmeter Circuit
Main components of object counter circuit are 4 digit 7-Segment
display, Arduino Uno, 74HC595.

D1 A F D2 D3 B
12 11 10) 8 T
I | I | | I
L] L] L] []
I | I | | I
1 2 3 4] (1]
E D decimal C G D4

Figure 5.1: 4 Digit 7-Segment Display Pin Diagram

R1-R8=1K

.CP
TAHCEEE

U2

T <
[y

DIGITAL [~

el B E Sl s
1A

E
o
o
S
S
5
£
5
)
=
LS]

AHALOG IH

ARDUINO UNDRZ

ARD1

Figure 5.2: Digital Voltmeter Circuit

5.3 Digital Voltmeter Arduino Code

Program is constructed using “TimerOne” library. Program have
different modules, Setup, Loop. In setup we initialize all the IO
connections and Timer, Display. In main loop we are taking Analog
input and constantly updating display to show voltage value.

/>I<
Digital Voltmeter using 4-Digit 7-segment Display
www.circuits4you.com

*/

#include <TimerOne.h>

//Define 74HC595 Connections with arduio
const int Data =7;

const int Clock =8;

const int Latch =6;

const int SEGO =5;
const int SEG1 =4;
const int SEG2 =3;
const int SEG3 =2;

int cc =0;

char Value [4];

const char SegData []=
{0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

//::
/! Setup
//::
void setup () {

// initialize the digital pin as an output.

Serial . begin (9600);

pinMode (Data , OUTPUT);
pinMode (Clock , OUTPUT);
pinMode (Latch , OUTPUT);
pinMode (SEGO, OUTPUT);
pinMode (SEG1, OUTPUT);
pinMode (SEG2, OUTPUT);
pinMode (SEG3, OUTPUT);

//nitialize Display Scanner
cc =03
Timer1 . initialize (10000); // set a timer of length 100000
microseconds (or 0.1 sec - or 10Hz => the led will blink 5 times, 5 cycles
of on-and-off, per second)
Timer1 . attachInterrupt (timerlsr); // attach the service routine here

void loop () {

char Volt [4];

int Voltage = analogRead (AO);

//To get fixed point decimal point we multiply it by 100

Voltage = (500/1024.0) * Voltage ; //Scaling of 0 to 5V i.e. 0 to 1023 to
0 to 10 (in 10 steps)

//Display Voltage on Segments
sprintf (Volt ,"%04d", Voltage); //We get ASCII array in Volt
Serial . println (Volt);

Value [0]= Volt [0] & 0x0F; //Anding with 0xOF to remove upper nibble

Value [1]= Volt [1] & 0x0F; //Ex. number 2 in ASCII is 0x32 we want
only 2

Value [2]= Volt [2] & 0x0F;

Value [3]= Volt [3] & 0x0F;

delay (200);

void DisplayDigit (char d)
{

inti;

for(i=0;1i<8;i++) //Shift bit by bit data in shift register
{
if((d & 0x80)==0x80)
{
digitalWrite (Data , HIGH);
}
else
{
digitalWrite (Data , LOW);

}
d=d <<1;

//Give Clock pulse
digitalWrite (Clock , LOW);
digitalWrite (Clock , HIGH);
}
//Latch the data
digitalWrite (Latch , LOW);
digitalWrite (Latch , HIGH);

/l TIMER 1 OVERFLOW INTTERRUPT FOR
DISPALY

void timerlsr ()

{

cC ++;

if(cc ==5) //We have only 4 digits

{cc=1;}

Scanner ();

TCNTO =0xCC;
}
//::
/! SCAN DISPLAY FUNCTION
//::

void Scanner ()

{
switch (cc) //Depending on which digit is selcted give output

{
case 1:
digitalWrite (SEG3 , HIGH);
DisplayDigit (SegData [Value [0]]);
digitalWrite (SEGO , LOW);
break;
case 2:
digitalWrite (SEGO , HIGH);
DisplayDigit (SegData [Value [1]] | 0x80); //0x80 to turn on decimal
point
digitalWrite (SEG1, LOW);
break;
case 3:
digitalWrite (SEG1, HIGH);
DisplayDigit (SegData [Value [2]]);
digitalWrite (SEG2 , LOW);
break;
case 4:

digitalWrite (SEG2 , HIGH);

DisplayDigit (SegData [Value [3]]);

digitalWrite (SEG3, LOW);
break;

Conclusion

This code demonstrates how to construct digital voltmeter using
arduino.

You can try with different sensor and measurement with this code
for more on AC, DC voltage, current measurement you can refer
“Measurement Made Simple with Arduino e-Book” available on
circuits4you.com and Amazon.

https://www.amazon.com/Measurement-Made-Simple-Arduino-measurements-ebook/dp/B01EY3NURS
http://circuits4you.com/

6. Arduino Water Level Controller

6.1 Introduction

Water Level controllers do not need operator for performing start
and stop operations of water pump. This automatic water level
controller switches ON the motor when the water level in the tank
becomes low (desired prefixed lower limit). It switches OFF the
motor once the tank becomes full.

Components Required
1. Arduino Uno

2. LCD 16x2.

3. Float Sensor.

4. 1K,220E,10K Resistors

5. 12V Relay

6. BC548 Transistor

7. Switches.

6.2 Water Level Controller Circuit

Leo Telameal
WAL Purmp Control

S
0;1

880 p2. sspzisss
sas sl Alzlsoenng

LED-SHEEHW

DORSH- 1280 ” ! & i e
e
3 C ot DHGITAL (P

circuitsdyou.com

RHALDG N

Figure 6.1: Water Level Controller Circuit

Main components of water level controller are Relay and level
sensors. Level sensors are build using analog in placed close with
+5V. Water acts as conductor when water touches the contact some
part of voltage goes to analog in pins, this way it detects water level.
Float sensors can be used instead of contacts.

Pump can be controlled manually using switches. Pump
automatically turns off when it detects the upper tank level full or
bottom sump tank is empty. In automatic operation pump turns on
when upper tank level goes below the sensor level.

Water pump is connected to the relay. LCD display shows the tank
level and pump status.

6.3 Water Level Controller Arduino Code

/*
circuits4you.com
Water Level Controller
*/
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd (9, 8, 7, 6, 5, 4);

const int LED RED =10; //Red LED
const int LED GREEN =11; //Green LED
const int RELAY =12; //Lock Relay or motor

//Key connections with arduino
const int on_key =3;

const int off_key =2;

char Pump =0;

//::
/1 SETUP
//::
void setup (){

pinMode (LED_RED, OUTPUT);
pinMode (LED_GREEN , OUTPUT);
pinMode (RELAY , OUTPUT);
pinMode (on_key , INPUT);
pinMode (off_key , INPUT);

//Pull up for setpoint keys
digitalWrite (on_key , HIGH);
digitalWrite (off_key , HIGH);

// set up the LCD's number of columns and rows:

lcd . begin (16, 2);

// Print a message to the LCD.

lcd . print ("circuitsdyou.com");

lcd . setCursor (0,1); /Move coursor to second Line
lcd . print ("Pump Controller");

digitalWrite (LED_GREEN, HIGH); //Green LED Off
digitalWrite (LED_RED , HIGH); //Red LED Off
digitalWrite (RELAY , LOW); //Turn off Relay
lcd . setCursor (0,1);

lcd . print ("Pump : OFF ");

delay (2000);

void loop (){

lcd . setCursor (0,0);
lcd . print ("Water Level:"); //Do not display entered keys
if(analogRead (A4)>512) //Check High Level
{
lcd . print ("FULL ");
digitalWrite (LED_GREEN , LOW); //Green LED On
Pump =0; //Pump off
}

if(analogRead (A5)<400) //Check Low Level
{
lcd . print ("LOW ");
digitalWrite (LED_GREEN , HIGH); //Tank Level Low turn off Green
LED

}

if(analogRead (A3) <400) //Lower Tank Empty
{

Pump =0;
lcd . setCursor (0,1);
lcd . print ("Lower Tank Empty ");
delay (1000);
}

else

{
if(analogRead (A5)<400) //Upper tank water level low turn on pump

{
Pump =1;
}
}

if(Pump ==1)
{
digitalWrite (LED_RED , LOW); //Turn on pump indication and
pump
digitalWrite (RELAY , HIGH);
lcd . setCursor (0,1);
lcd . print ("Pump : ON ");
}

else

{
digitalWrite (LED_RED , HIGH); //Turn off pump indication and
pump
digitalWrite (RELAY , LOW);
lcd . setCursor (0,1);
lcd . print ("Pump : OFF ");
delay (1000);
}

//Get user input for setpoints
if(digitalRead (on_key)== LOW)
{
while(digitalRead (on_key)== LOW); //Wait until low
Pump =1; // Turn on pump

}

if(digitalRead (off_key)== LOW)
{
Pump =0; //Turn off Pump

}

delay (100); //Update at every 100mSeconds

Conclusion
Test circuit with water and observe LED and Relay on/off with
simulating test conditions.

For continuous precise water level measurement you can refer
“Measurement Made Simple with Arduino e-Book” available on
circuits4you.com and Amazon.

https://www.amazon.com/Measurement-Made-Simple-Arduino-measurements-ebook/dp/B01EY3NURS
http://circuits4you.com/

7. Automatic Light Controller

7.1 Introduction

Automatic light controller offers energy saving and convenience in
the areas with a photo sensor (LDR). This senses the ambient light
conditions in the surrounding area and switches ON-OFF the
lighting load. The darkness level in the surrounding is settable. It is
in-built with an additional PIR Sensor which TURNS ON Light in
the presence of human and switches OFF after 10 seconds if no
human detected for energy saving operation. Thus it provides
artificial light only when it is needed. This reduces the large amount
of energy wastage and helps in making the most energy efficient
lightings.

Components Required
1. Arduino Uno

2. PIR Sensor.

3. LDR Sensor.

4. 1K, 10K Resistors

5. 12V Relay

6. BC548 Transistor

7. Switches.

7.2 Automatic Light Controller Circuit

Circuit is constructed witch PIR sensor, LDR and Arduino. Light
Load is connected to Relay. Manual on off is possible with given
switches.

PIR Sensor

PR Seneer « Mosen tarmas or laiken Darterior]

Figure 7.1: PIR Sensor

A passive infrared sensor (PIR sensor) is an electronic sensor that
measures infrared (IR) light radiating from objects in its field of
view. They are most often used in PIR-based motion detectors.

LDR

Figure 7.2: LDR Sensor

A photoresistor (or light-dependent resistor, LDR, or photocell) is a
light-controlled variable resistor. The resistance of a photoresistor
decreases with increasing incident light intensity; in other words, it
exhibits photoconductivity.

PIR Meotion Sensor

Manual Contral
ON
o
0 o
OFF
—l @
9 oO—
+13
REL1 _T_
|
; g
/ 7 a1
1
Oml-5H-1 24D R4
1K
BCS48 =3

10K

SOk

ANALOG IN LDR1

Figure 7.3: Automatic Light Controller Circuit

7.3 Automatic Light Controller Arduino Code

/>I<

circuits4dyou.com

Day night Switch with Occupancy Sensor (Automatic Light Controller)
*/
const int RELAY =12; //Lock Relay or motor

//Key connections with arduino
const int on_key =3;

const int off_key =2;

int counter =0, manual =0;

//Sensor Connections
const int LDR = A5
const int PIR =4;

//::
/1 SETUP
//::
void setup (){

pinMode (RELAY , OUTPUT);
pinMode (on_key , INPUT);
pinMode (off_key , INPUT);
pinMode (PIR , INPUT);

//Pull up for setpoint keys
digitalWrite (on_key , HIGH);
digitalWrite (off_key , HIGH);
digitalWrite (PIR , HIGH);

digitalWrite (RELAY , LOW); //Turn off Relay

void loop (){

//Turn on Lights if Motion is detected and Light intensity is low
if(digitalRead (PIR)== HIGH)
{
counter =1000; //Set 10 Seconds time out counter
if(counter >15) //Motion detected for 1.5 Seconds
{
if(analogRead (LDR)>512) //Light intensity is low
{
digitalWrite (RELAY , HIGH); //Turn on Lights
}
}
}

counter --;
if(counter ==0)
{
if(manual ==0) //Check that it is not manually turned on
{
digitalWrite (RELAY , LOW);
}
}

//Get user input for setpoints
if(digitalRead (on_key)== LOW)
{
digitalWrite (RELAY , HIGH); //Turn on Lights
manual =1; //Manually it is turned on

}

if(digitalRead (off_key)== LOW)

{
digitalWrite (RELAY , LOW); //Turn off Lights
manual =0;

}

delay (10); //Update at every 10mSeconds

Conclusion
Circuit is build with very few components and it saves lot of energy.
Test circuit.

8. Solar Power Monitor

8.1 Introduction

Solar Power Monitor is circuit to monitor current power generation
of solar power. It uses ACS712 Current sensor, Voltage sensor (use
voltage divider), Temperature sensor .LM35. The circuit will display
instantaneous current, voltage and power on LCD. Maximum
current we can measure here is 20Amps with 12v solar system.

Components Required
1. Arduino Uno

2. ACS712-20A

3.16x2 LCD

4. 1K, 9K Resistors

5. LM35 Temperature sensor

8.2 Solar Power Monitor Circuit

Lz
LT 3L
=
R3 %88 g3, sszmzmss
Ll:_: ;ec.ia Helalzldle
-k
Rz
1K
T uz =
B lee e pRE
I DIGITAL (-Fwid) i{man e

[

cireuitsdyou.com
ESREREEEERERERERAEREN

AHALOG

i

Figure 8.1: Solar Power Monitor Circuit

LCD displays Current measured using ASC712-20Amp sensor,
voltage when there is sunlight it displays voltage across solar panel
is equal to the battery voltage at night we get correct battery voltage
level.

8.3 Solar Power Monitor Code

/>I<

circuits4dyou.com

Solar Power Generation Monitoring System
*/
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd (9, 8, 7, 6, 5, 4);

//Sensor Connections
const int Temp = AO ;
const int Current = Al ;
const int VoltDiv = A2 ;

double mVperAmp = 100; // use 100 for 20A Module and 66 for 30A
Module

double ACSoffset = 2500;

double RawValue = 0;

double Volt = 0;

double Amps = 0;

//::
/l SETUP
//::
void setup (){

// set up the LCD's number of columns and rows:
lcd . begin (16, 2);

// Print a message to the LCD.

lcd . print ("circuits4dyou.com");

lcd . setCursor (0,1); /Move coursor to second Line
lcd . print (" Solar Power ");

delay (2000);

void loop (){

double Temperature = ((5.0/1024.0) * analogRead (Temp)) * 100;
//10mV per degree 0.01V/C. Scalling

double Voltage = ((5.0/1024.0) * analogRead (VoltDiv))* 10;
//Voltage devider /10 can measure upto 50V

//ACS712 Current Measurement

RawValue = analogRead (Current);

Volt = (RawValue /1024.0) * 5000.0; // Gets you mV
Amps = ((Volt - ACSoffset) / mVperAmp);

//Display Line 1 Temperature and Power

lcd . setCursor (0,0); //Move cursor to line 1

lcd . print ("T:");

lcd . print (Temperature);

lcd . print ("C ");

lcd . print ("P:");

lcd . print (Voltage * Amps); //Calculate power
lcd . print ("W™");

//Display Line 2 Voltaeg and Current

lcd . setCursor (0,1); //Move cursor to line 2
led . print ("V:"); //Display Voltage

lcd . print (Voltage);

led . print ("V ");

lcd . print ("1:"); /Current Current

lcd . print (Amps);

led . print (" A");

delay (100); //Update at every 100mSeconds

Conclusion
Here we have learned how to measure voltage, current and power
using arduino. You can use ACS712 current sensor module.

9. Ultrasonic Distance Meter

9.1 Introduction

This application is based upon the reflection of sound waves. Sound
waves are defined as longitudinal pressure waves in the medium in
which they are travelling. Subjects whose dimensions are larger
than the wavelength of the impinging sound waves reflect them; the
reflected waves are called the echo. If the speed of sound in the
medium is known and the time taken for the sound waves to travel
the distance from the source to the subject and back to the source is
measured, the distance from the source to the subject can be

computed accurately. This is the measurement principle of this
application.

Components Required

1. Arduino Uno

2. HCSRO04 Ultrasonic Distance Sensor
3.16x2 LCD

4. 1K Resistors

9.2 Ultrasonic Distance Meter Circuit
LCD1

R3 G800 pE, ssE22885

1K
T P -FFERHEE:

mmmmmmmmm

TR 5
DIGITAL (~FWH)

NE-dIEQNLY
LA
circuitsdyou.cam
EEERENEEEEERER
T
ANALOG IN

Figure 9.1: Ultrasonic Distance Meter Circuit

LCD displays measured distance using ultrasonic sensor in inches

and cm’s.

9.3 Ultrasonic Distance Meter Arduino Code

Here the medium for the sound waves is air, and the sound
waves used are ultrasonic, since it is inaudible to humans. Assuming
that the speed of sound in air is 1100 feet/second at room
temperature and that the measured time taken for the sound waves
to travel the distance from the source to the subject and back to the
source is t seconds, the distance d is computed by the formula
d=1100 X 12 X t inches. Since the sound waves travel twice the
distance between the source and the subject, the actual distance
between the source and the subject will be d/2.

circuitsdyou.com

Distance Measurement

Ultrasonic sensor Pins:
VCC: +5VDC
Trig : Trigger (INPUT) - Pin 3
Echo: Echo (OUTPUT) - Pin 2
GND: GND

#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd (9, 8, 7, 6, 5, 4);

int trigPin =3; //Trig - green Jumper
int echoPin = 2; //Echo - yellow Jumper
long duration , cm, inches ;

void setup () {
//Serial Port begin
Serial . begin (9600);
//Define inputs and outputs

pinMode (trigPin , OUTPUT);
pinMode (echoPin , INPUT);

// set up the LCD's number of columns and rows:
lcd . begin (16, 2);
}

void loop ()
{

// The sensor is triggered by a HIGH pulse of 10 or more microseconds.
// Give a short LOW pulse beforehand to ensure a clean HIGH pulse:
digitalWrite (trigPin , LOW);

delayMicroseconds (5);

digitalWrite (trigPin , HIGH);

delayMicroseconds (10);

digitalWrite (trigPin , LOW);

// Read the signal from the sensor: a HIGH pulse whose
// duration is the time (in microseconds) from the sending
// of the ping to the reception of its echo off of an object.
pinMode (echoPin , INPUT);

duration = pulseln (echoPin, HIGH);

// convert the time into a distance
cm = (duration /2)/29.1;
inches = (duration /2)/ 74;

lcd . setCursor (0,0);
led . print ("Inches:");
led . print (inches);
led . print ("in");

lcd . setCursor (0,1);
led . print ("Cm:");
lcd . print (cm);
led . print ("cm");

Serial .

Serial

print (inches);

. print ("in, ");
Serial .
Serial .
Serial .

print (cm);
print ("cm");
println ();

delay (250);

Conclusion

Ultrasonic Distance meter will show the distance on LCD as well as
on serial terminal. You can try this project with 7-Segment display
also.

10. Digital Timer

10.1 Introduction

Need a few minutes? Pick up the Mini Digital Timer. It's the perfect
size for use in the kitchen or around the house, with an easy-to-read
display. Use for countdown timer and enjoy an elapsed time graphic
plus an alarm.

Components Required

1. Arduino Uno

2. Buzzer

3. 4-Digit 7-Segnement Display Common Cathode
4. 1K Resistors

5. BC548 Transistor

6. 74HC595

7. Switches

10.2 Digital Timer Circuit

circuitedyou.com o=

SERFRERSR

HI S0 TN
-

ErsFEEEE®
EEEaEEEEREE
(A=) To L

Figure 10.1: Digital Timer Circuit

Two switches are used to set minutes and seconds. As soon as you
set the seconds or minutes timer will start to run. It gives beeping

sound when time countdown reaches to zero. If both Min and Sec

switch is pressed it clears the time.

10.3 Digital Timer Arduino Code

/>I<
Digital Timer using 4-Digit 7-segment Display
www.circuits4you.com

*/

#include <TimerOne.h>

//Define 74HC595 Connections with arduio
const int Data =7;

const int Clock =8;

const int Latch =6;

const int SEGO =5;
const int SEG1 =4;
const int SEG2 =3;
const int SEG3 =2;

const int Buzzer =13; //Buzzer

//Up down keys connection
const int Min_key =10;
const int Sec_key =9;

int cc =0;

char Value [4];

const char SegData []=
{0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

int MIN =0, SEC =0, count =10;

void setup () {
// initialize the digital pin as an output.
Serial . begin (9600);
pinMode (Data , OUTPUT);
pinMode (Clock , OUTPUT);
pinMode (Latch , OUTPUT);
pinMode (SEGO, OUTPUT);
pinMode (SEG1, OUTPUT);
pinMode (SEG2 , OUTPUT);
pinMode (SEG3, OUTPUT);
pinMode (Buzzer , OUTPUT);
digitalWrite (Buzzer , LOW); //Turn off buzzer

pinMode (Min_key , INPUT); //Keys or proxmity sensor
pinMode (Sec_key , INPUT);

digitalWrite (Min_key , HIGH); //Pull up for keys
digitalWrite (Sec_key , HIGH);

//nitialize Display Scanner

cc =0;

Timer1 . initialize (10000); // set a timer of length 100000
microseconds (or 0.1 sec - or 10Hz => the led will blink 5 times, 5 cycles
of on-and-off, per second)

Timer1 . attachInterrupt (timerlsr); // attach the service routine here

}
//::
/l Loop
//::
void loop () {

char cMIN [4], cSEC [4];

if(count ==0)
{
count =10; /1 Second as we have loop delay of 100mSec
if(MIN >0) //if Minutes are greater than zero
{
if(SEC ==0)
{
MIN --;
SEC =60;
}
}
SEC --;
//Check that timer is zero
if(MIN ==0 && SEC ==1) //Second is kept one to avoid beeping at
normal zero
{
digitalWrite (Buzzer , HIGH); //Turn on Buzzer
}
}
if(MIN >0 || SEC > 0)
{

count --;

}

if(digitalRead (Min_key)== LOW)
{

delay (10);

MIN ++;

digitalWrite (Buzzer , LOW); //Turn off Buzzer
}

if(digitalRead (Sec_key)== LOW)
{
delay (10); //debounce
SEC ++;
if(SEC >59) //60 seconds = 1 minute

{
MIN ++;

SEC =0;
}
digitalWrite (Buzzer , LOW); //Turn off Buzzer
}

if(digitalRead (Sec_key)== LOW &&
digitalRead (Min_key)== LOW) //If both Switches pressed clear timer
{
MIN =0;
SEC =0;
digitalWrite (Buzzer , HIGH); //Give Beep
delay (500);
digitalWrite (Buzzer , LOW);
}

//Display Count on Segments

sprintf (cMIN ,"%02d", MIN); //We get ASCII array
sprintf (cSEC ,"%02d", SEC); //We get ASCII array

Serial . println (cMIN); //Print Count on Serial for debug

Value [0]= cMIN [0] & 0x0F; //Anding with 0xOF to remove upper
nibble

Value [1]= cMIN [1] & 0x0F; //Ex. number 2 in ASCII is 0x32 we want
only 2

Value [2]= c¢SEC [0] & 0x0F;
Value [3]= cSEC [1] & 0x0F;
delay (100);

/l TIMER 1 OVERFLOW INTTERRUPT FOR

void timerlsr ()

{

cC ++;

if(cc ==5) //We have only 4 digits

{cc=1;}

Scanner ();

TCNTO =0xCC;
}
[[==
/1 Generates Digit

void DisplayDigit (char d)
{

inti;

for(i=0;i<8;i++) //Shift bit by bit data in shift register
{
if((d & 0x80)==0x80)
{
digitalWrite (Data , HIGH);
}
else
{
digitalWrite (Data , LOW);

}
d=d<<l1;

//Give Clock pulse
digitalWrite (Clock , LOW);
digitalWrite (Clock , HIGH);
}
//Latch the data
digitalWrite (Latch , LOW);
digitalWrite (Latch , HIGH);
}

void Scanner ()

{
switch (cc) //Depending on which digit is selcted give output
{

case 1:
digitalWrite (SEG3 , HIGH);
DisplayDigit (SegData [Value [0]]);
digitalWrite (SEGO , LOW);
break;
case 2:
digitalWrite (SEGO , HIGH);
DisplayDigit (SegData [Value [1]] | 0x80); //Decimal Point
digitalWrite (SEG1 , LOW);
break;
case 3:
digitalWrite (SEG1, HIGH);
DisplayDigit (SegData [Value [2]]);
digitalWrite (SEG2 , LOW);
break;
case 4:
digitalWrite (SEG2 , HIGH);
DisplayDigit (SegData [Value [3]]);
digitalWrite (SEG3 , LOW);
break;

Conclusion
This timer can be used in many applications, you can add start and
stop button similar to commercial timers.

11. Automatic Irrigation System

11. 1 Introduction

Automatic Irrigation system monitors the soil moisture and
depending on set points turns on/off the pump which is connected to
the relay. This way you can keep soil moisture to a set point.

This system automatically waters the plants when we are on
vacation. As we are setting the soil moisture level, we need not to
worry about too much of watering and the plants end up dying

anyway.

Components Required
1. Arduino Uno

2. Soil moisture sensor
3.16x2 LCD

4. 1K, 220E Resistors

5. 12V Relay

6. BC548 Transistor

7. Switches

11.2 Automatic Irrigation System Circuit

LCD
& Soll Melsture
Sensor

#u EEREEIEEE

siedel slell oelafelzlelnls

= :I e

WES
i)
WEE
1:]

&
. [
H |
&
g
3
E§E
gas
3 B
| FFe =
L) g E
B (=]
|§ B g 5]
w 5 z 3
1 P 8 5
1 E g) =
& B =
a - Fadie E a8
Do 5 4 20 E = =]
Pump Contral [HGITAL [T E
Relay R
FFETEEEEEEEEN
- - Pait this probe

in soil

AHALCHE IN

Figure 11.1: Automatic Irrigation System Circuit

LCD displays the current moisture level and set point. Set point can
be adjusted using push buttons. Connect relay output to water
pump. Put soil moisture tip in soil where you want to maintain soil
moisture.

11.3 Automatic Irrigation System Arduino Code

/*
circuits4dyou.com
Automatic Irrigation System
*/
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd (9, 8, 7, 6, 5, 4);

const int LED_RED =10; //Red LED
const int LED_GREEN =11; //Green LED
const int RELAY =12; //Lock Relay or motor

//Key connections with arduino
const int up_key =3;

const int down_key =2;

int SetPoint =30;

//::
/l SETUP
//::
void setup (){

pinMode (LED_RED, OUTPUT);
pinMode (LED_GREEN, OUTPUT);
pinMode (RELAY , OUTPUT);
pinMode (up_key , INPUT);
pinMode (down_key , INPUT);

//Pull up for setpoint keys
digitalWrite (up_key , HIGH);
digital Write (down_key , HIGH);

// set up the LCD's number of columns and rows:
lcd . begin (16, 2);

// Print a message to the LCD.

lcd . print ("circuitsdyou.com");

lcd . setCursor (0,1); /Move coursor to second Line
lcd . print (" Irrigation ");

delay (1000);

lcd . setCursor (0,1);

lcd . print (" System ");

digitalWrite (LED_GREEN , HIGH); //Green LED Off
digitalWrite (LED_RED ,LOW); //Red LED On
digitalWrite (RELAY , LOW); //Turn off Relay
delay (2000);

void loop (){
double WaterLevel = ((100.0/1024.0) * analogRead (A0)); //Map it in
0 to 100%

lcd . setCursor (0,0);

lcd . print ("Water :"); //Do not display entered keys
lcd . print (WaterLevel);

led . print ("% ");

//Get user input for setpoints
if(digitalRead (down_key)== LOW)

{
if(SetPoint >0) //Not less than zero
{
SetPoint --;
}
}
if(digitalRead (up_key)== LOW)
{

if(SetPoint <99) //Not more than 100%

{
SetPoint ++;
}
}

//Display Set point on LCD
lcd . setCursor (0,1);
lcd . print ("Set Point:");
lcd . print (SetPoint);
led . print ("% ");

//Check Temperature is in limit

if(WaterLevel > SetPoint)

{
digitalWrite (RELAY , LOW); //Turn off water pump
digitalWrite (LED_RED , HIGH);
digitalWrite (LED_GREEN , LOW); //Turn on Green LED

}

else

{

digitalWrite (RELAY , HIGH); //Turn on water pump

digitalWrite (LED_GREEN , HIGH);

digitalWrite (LED_RED , LOW); //Turn on RED LED
}

delay (100); //Update at every 100mSeconds

Conclusion
This system can be applied to garden using multiple soil moisture
sensors. This code is similar to temperature controller circuit.

12. Mood Lamp

12.1 Introduction

Philips offers LivingColor full color lamps, Mood lamp is similar to
the Living Color lamp uses buttons to set the color, from this project
we get clear idea to control RGB LED Strip to set desired color.

Components Required
1. Arduino Uno

2. RGB LED Strip

4. ULN2003

5. Switch

12.2 Mood Lamp Circuit

¥

|8
i

LE
ARz

=5
TINg

. circuitsdyou.com :
Tl

)

outnpJy X
| _ ¥
k!
i -
19180
-
raw ea2bBbeRODSS

D

|

l'-..

[!
b

Figure 12.1: Mood Lamp Circuit

Mood lamp circuits uses ULN2003 to drive RGB LED Strip we are

using PWM Channels of Arduino Uno. Single switch to control the
color.

12.3 Mood Lamp Arduino Code

/l RGB LED Color Control
/l circuits4you.com

// constants won't change. They're used here to

// set pin numbers:

const int buttonPin =7; // the number of the pushbutton pin
const int BLUEledPin = 11; //LED pin

const int REDledPin = 10; // LED pin

const int GREENledPin = 9; //LED pin

// variables will change:
int buttonState = 0; // variable for reading the pushbutton status
int color =0;

void setup () {
// initialize the LED pin as an output:
pinMode (BLUEledPin , OUTPUT);
pinMode (REDledPin , OUTPUT);
pinMode (GREENIledPin , OUTPUT);

// initialize the pushbutton pin as an input:
pinMode (buttonPin , INPUT);
digitalWrite (buttonPin , HIGH); //Activate internal pull up for switch

void loop (){
// read the state of the pushbutton value:
buttonState = digitalRead (buttonPin);

// check if the pushbutton is pressed.
// if it is, the buttonState is HIGH:
if (buttonState == LOW) {
delay (300);
color ++;
if(color >10)
{ color =03}
}

//Set different color values refer HTML Color codes
switch (color)
{
case 0:
SetColor (255,0,0);
break;
case 1:
SetColor (255,255,0);
break;
case 2:
SetColor (0,0,255);
break;
case 3:
SetColor (128,128,20);
break;
case 4:
SetColor (0,255,255);
break;
case 5:
SetColor (55,100,100);
break;
case 6:
SetColor (0x00,0xA8,0xA9);
break;

case 7/:

SetColor (0xCC,0x66,0x66);
break;
case 8:

SetColor (0x12,0xA2,0x7E);
break;
case 9:

SetColor (0xF0,0x80,0x32);
break;
case 10:

SetColor (0x30,0xFF,0xFF);
break;

void SetColor (char R ,char G ,char B)

{
analogWrite (REDledPin, R);
analogWrite (GREENledPin , G);
analogWrite (BLUEledPin, B);

}

Conclusion

Simple PWM generation of Arduino can be used for controlling
colors of RGB LED strip. You can try this project with combination
of Bluetooth module.

13. Bluetooth based home
automation

13. 1 Introduction

Now days everyone talks about smart home and smart phones. Let’s
see how we can convert simple electrical switch board into smart
android app controlled. Here we are using arduino and Bluetooth
module to control relays. Android app acts as wireless serial link
between arduino an android app.

You can download android app “BlueHome.apk” from google drive
link
https://drive.google.com/file/d/0ByhR7XNrCOROMXEtYmRId1lyS
kU/view?usp=sharing

https://drive.google.com/file/d/0ByhR7XNrC0R0MXEtYmRld1lySkU/view?usp=sharing

Components Required

1. Arduino Uno

2. Bluetooth Module HC-06 (Note: Android App works only with
HCO06)

3. 4-Channel Relay Board

4. Connecting Wires

13.2 Bluetooth Based Home Automation Circuit

Connect Relay Gulput to
AL Load ™

Ralay
Mo dula

cirewitsayou.com

+12W

GND

outnpJdy |t

xi

. -
EdE2]

e B

Bluetoath
HC 06

(ONN)

T

Remove this line while
PEmapLanning

(1814

Cal

...:._-._‘
=

| ‘

=
o

i =

. HO Il s,

Figure 13.1: Bluetooth based home automation circuit

This circuit uses Bluetooth module HC-06, Arduino Uno and 4-
channel relay board. It is kept as simple as possible. Bluetooth
module acts as wireless serial link between Android App and
Arduino. Remove Rxd line while programming. As we are not
sending any signal to Android phone we have connected only Txd
of Bluetooth module to Rx of arduino.

13.3 Bluetooth based home automation arduino
code

/ *
circuitsdyou.com

Bluetooth based home automation
*/

//Define Relay Connections
#define Relayl 8

#define Relay2 9

#define Relay3 10

#define Relay4 11

int inByte = 0; // incoming serial byte

void setup () {
Serial . begin (9600);
pinMode (13, OUTPUT);
pinMode (Relayl , OUTPUT); //Relay Pins in Output mode
pinMode (Relay2 , OUTPUT);
pinMode (Relay3 , OUTPUT);
pinMode (Relay4 , OUTPUT);
}

void loop () {
if (Serial . available () > 0) {
inByte = Serial . read ();

switch (inByte) {
case 0x03:
digitalWrite (Relayl , HIGH); //Relay 1 on when inByte equals

break;
case 0x04:
digitalWrite (Relayl , LOW); //Relay 1 off when inByte equals

break;
case 0x05:
digitalWrite (Relay2 , HIGH); //Relay 1 on when inByte equals

break;
case 0x06:
digitalWrite (Relay2 , LOW); //Relay 1 off when inByte equals

break;
case 0x07:
digitalWrite (Relay3 , HIGH); //Relay 1 on when inByte equals

break;
case 0x08:
digitalWrite (Relay3 , LOW); //Relay 1 off when inByte equals

break;
case 0x09:
digitalWrite (Relay4 , HIGH); //Relay 1 on when inByte equals

break;
case Ox0A:
digitalWrite (Relay4 , LOW); //Relay 1 off when inByte equals

break;
case 0x0B:
digitalWrite (Relayl , HIGH); //All Relays ON when inByte
equals 1
digitalWrite (Relay2 , HIGH);
digitalWrite (Relay3 , HIGH);
digitalWrite (Relay4 , HIGH);
break;
case 0x0C:
digitalWrite (Relayl , LOW); //All Relays OFF when inByte
equals 2
digitalWrite (Relay2 , LOW);
digitalWrite (Relay3 , LOW);

}

digitalWrite (Relay4 , LOW);
break;

Testing Procedure

1. Install Android app on your phone.

2. Allow third party download

3. Pair HC-06

4. Then start the software

5. Press Connect button on android app

6. Press on off buttons on android app and see the results.

14. Traffic Light Controller

14.1 Introduction

The normal function of traffic lights requires more than slight
control and coordination to ensure that traffic moves as smoothly
and safely as possible and that pedestrians are protected when they
cross the roads. A variety of different control systems are used to
accomplish this, ranging from simple clockwork mechanisms to
sophisticated computerized control and coordination systems that
self-adjust to minimize delay to people using the road. Here we are
using arduino to do the work.

Components Required
1. Arduino Uno

2. Red LEDs

3. Green LEDs

4. Yellow LEDs

5. 1K Resistors

14.2 Traffic Light Controller Circuit

ARDN

circuitsdyou.com

-1 T LI

Figure 14.1: Traffic Light Controller Circuit

Connect LEDs in series with 1K current limiting resistor and make
placement as shown in figure 14.1.

14.3 Traffic Light Controller Code

Controlling of traffic light is all about signal timing and sequencing.

// Traffic Light Controller
// circuits4you.com

//Arduino Connections with Traffic Lights (LEDs)
constint R_1=11;
constint Y_1=12;
constint G_1 =13;

const int R_2 =8;
constintY_2 =9;
const int G_2 =10;

const int R_3 =5;
constint Y_3 =6;
const int G_3 =7;

const int R_4 =2;
constintY_4 =3;
const int G_4 =4;

void setup ()
{
//Make all LEDs digital Outputs
pinMode (R_1, OUTPUT);

pinMode (Y_1, OUTPUT);
pinMode (G_1, OUTPUT);

pinMode (R_2, OUTPUT);
pinMode (Y_2, OUTPUT);
pinMode (G_2, OUTPUT);

pinMode (R_3, OUTPUT);
pinMode (Y_3, OUTPUT);
pinMode (G_3, OUTPUT);

pinMode (R_4, OUTPUT);
pinMode (Y_4, OUTPUT);
pinMode (G_4, OUTPUT);

//Circuit Power on State all RED
digitalWrite (R_1, HIGH);
digitalWrite (Y_1, LOW);
digitalWrite (G_1, LOW);

digitalWrite (R_2 , HIGH);
digitalWrite (Y_2, LOW);
digitalWrite (G_2, LOW);

digitalWrite (R_3, HIGH);
digitalWrite (Y_3, LOW);
digitalWrite (G_3, LOW);

digitalWrite (R_4 , HIGH);
digitalWrite (Y_4, LOW);
digitalWrite (G_4 , LOW);

/1 Programming

void loop ()

{
int YellowTime =2000; //2 Seconds
int GreenTime =30000; //30 Seconds

//1. ===
digitalWrite (R_1, LOW);
digitalWrite (Y_1, LOW);
digitalWrite (G_1, HIGH);
delay (GreenTime);
//1, ========================SS=================
digitalWrite (R_1, LOW);
digitalWrite (Y_1, HIGH);
digitalWrite (G_1, LOW);
delay (YellowTime);
digitalWrite (R_1, HIGH);
digitalWrite (Y_1, LOW);

[/2. ===
digitalWrite (R_2 , LOW);
digitalWrite (Y_2 , LOW);
digitalWrite (G_2 , HIGH);
delay (GreenTime);
/[2. ======================s=SSSSS=S=============
digitalWrite (R_2 , LOW);
digitalWrite (Y_2 , HIGH);
digitalWrite (G_2 , LOW);
delay (YellowTime);
digitalWrite (R_2 , HIGH);
digitalWrite (Y_2 , LOW);

//3. - - - - s s - - - T
digitalWrite (R_3, LOW);
digitalWrite (Y_3, LOW));
digitalWrite (G_3 , HIGH);

delay (GreenTime);

//3. —

digitalWrite (R_3, LOW);
digitalWrite (Y_3 , HIGH);
digitalWrite (G_3, LOW);
delay (YellowTime);

digitalWrite (R_3, HIGH);
digitalWrite (Y_3, LOW);

//4. - - - - - - - - - - - T T T T T T T T T T T T T T T T

digitalWrite (R_4 , LOW);
digitalWrite (Y_4, LOW);
digitalWrite (G_4 , HIGH);
delay (GreenTime);

//4. —

digitalWrite (R_4, LOW);
digitalWrite (' Y_4 , HIGH);
digitalWrite (G_4 , LOW);
delay (YellowTime);

digitalWrite (R_4, HIGH);
digitalWrite (Y_4 , LOW);

Conclusion
Test the circuit in simulation and make it.

15. RPM Meter

15.1 Introduction

A tachometer (revolution-counter, tach, rev-counter, RPM gauge) is
an instrument measuring the rotation speed of a shaft or disk, as in a
motor or other machine. The device usually displays the revolutions
per minute (RPM) on a calibrated analogue dial, but digital displays
are increasingly common. Here we make use of arduino to measure
RPM.

Components Required
1. Arduino Uno

2. ACS712-20A

3.16x2 LCD

4. 1K, 9K Resistors

5. LM35 Temperature sensor

15.2 RPM Meter Circuit

(v =) TLI9a

2 s L
P -
circuitsdyou.com e = o pt :
B " 17 | E m
ine R ¥
] .| : “_.: I a7 :_4 [] []
: - & oF— i
™ O I TEHCEGS
L] =
]
[|
g
"
n
[]
n
L]

Ml SO0 TaNY
EFEFEEEESEEN

n-llllll_f:_ ARCH FO2ANT)

Figure 15.1: RPM Meter Circuit

Connect pulse input to arduino port 2. You can use any proximity
sensor or hall sensor to generate pulses from rotating wheel.

15.3 RPM Meter Arduino Code

/*
Digital RPM Meter using 4-Digit 7-segment Display
www.circuits4you.com

*/

#include <TimerOne.h>

#define MainPeriod 100

long previousMillis = 0; // will store last time of the cycle end
volatile unsigned long duration =0; // accumulates pulse width
volatile unsigned int pulsecount =0;

volatile unsigned long previousMicros =0;

//Define 74HC595 Connections with arduio
const int Clock =10;

const int Data =9;

const int Latch =8;

const int SEGO =7;
const int SEG1 =6;
const int SEG2 =5;
const int SEG3 =4;

int cc =0;

char Value [4];

const char SegData []=
{0x3F,0x06,0x5B,0x4F,0x66,0x6D,0x7D,0x07,0x7F,0x6F};

//::
/l Setup
//::
void setup () {

// initialize the digital pin as an output.
attachInterrupt (0, myinthandler , RISING);

pinMode (Data , OUTPUT);

pinMode (Clock , OUTPUT);
pinMode (Latch , OUTPUT);
pinMode (SEGO, OUTPUT);
pinMode (SEG1, OUTPUT);
pinMode (SEG2, OUTPUT);
pinMode (SEG3, OUTPUT);

//nitialize Display Scanner
cc =03
Timer1 . initialize (10000); // set a timer of length 100000
microseconds (or 0.1 sec - or 10Hz => the led will blink 5 times, 5 cycles
of on-and-off, per second)
Timer1 . attachInterrupt (timerlsr); // attach the service routine here

void loop () {
char rpm [4];
int RPM ;
unsigned long currentMillis = millis ();
if (currentMillis - previousMillis >= MainPeriod)
{
previousMillis = currentMillis ;
// need to bufferize to avoid glitches
unsigned long _duration = duration ;
unsigned long _pulsecount = pulsecount ;
duration = 0; // clear counters
pulsecount = 0;
float Freq = 1e6 / float(_duration); //Duration is in uSecond so it is
le6 /T
Freq *= _pulsecount ; //calculate F
//Convert Freq to RPM

RPM =Freq *60.0* 1.0; //RPM = Freq * 60 * (Number of
pulses per revolution)

//Display Freq on Segments
sprintf (rpm ,"%04d", RPM); //We get ASCII array in Volt

Value [0]= rpm [0] & 0x0F; //Anding with OxOF to remove upper
nibble
Value [1]=rpm [1] & 0x0F; //Ex. number 2 in ASCII is 0x32 we
want only 2
Value [2]= rpm [2] & 0x0F;
Value [3]= rpm [3] & 0x0F;
}

delay (200);

void DisplayDigit (char d)
{

inti;

for(i=0;1i<8;i++) //Shift bit by bit data in shift register
{
if((d & 0x80)==0x80)
{
digitalWrite (Data , HIGH);
}

else

{
digitalWrite (Data , LOW);

}
d=d <<1;

//Give Clock pulse
digitalWrite (Clock , LOW);
digitalWrite (Clock , HIGH);
}
//Latch the data
digitalWrite (Latch , LOW);
digitalWrite (Latch , HIGH);

/l TIMER 1 OVERFLOW INTTERRUPT FOR

void timerlsr ()

{

cC ++;

if(cc ==5) //We have only 4 digits

{cc=1;}

Scanner ();

TCNTO =0xCC;
}
//::
/! SCAN DISPLAY FUNCTION

void Scanner ()

{
switch (cc) //Depending on which digit is selcted give output

{
case 1:
digitalWrite (SEG3 , HIGH);
DisplayDigit (SegData [Value [0]]);
digitalWrite (SEGO , LOW);
break;

case 2:
digitalWrite (SEGO , HIGH);
DisplayDigit (SegData [Value [1]]);
digitalWrite (SEG1 , LOW);
break;
case 3:
digitalWrite (SEG1, HIGH);
DisplayDigit (SegData [Value [2]]);
digitalWrite (SEG2 , LOW);
break;
case 4:
digitalWrite (SEG2 , HIGH);
DisplayDigit (SegData [Value [3]]);
digitalWrite (SEG3 , LOW);
break;

void myinthandler () // interrupt handler
{
unsigned long currentMicros = micros ();
duration += currentMicros - previousMicros ;
previousMicros = currentMicros ;
pulsecount ++;

}

Conclusion
This project can be modified to display frequency and speed.

16. References

Here you get all simulation file links and hex files.

Simulation and Hex Files
http://circuits4you.com/arduino-pro-res1/

http://circuits4you.com/arduino-pro-res1/

It is password Protected. Its Password:
“arduprojvoll”

Donot forget to get this book, Measurement Made
simple with Arduino , Available in pdf at
circuits4dyou.com and Kindle format at Amazon

. e

S

Measurement
A ¥ 4 Made Simple with
o1k @ Arduino

Manoj R. Thakur

http://circuits4you.com/

Contents of Measurement Made

Simple with Arduino
Title Page
Number
1. | Introduction 1

1.1 Arduino Introduction

1.2 Arduino IDE basics

1.3 Arduino Programming

2. | Voltage Measurement

2.1 DC Voltage

1
1
2
1.4 Arduino Pin-outs 4
6
7
9

2.2 AC Voltage

3. | Current Measurement 11
3.1 DC Current 11
MeasurementASC712
3.2 DC Current Measurement using 14
Shunt Resistor
3.3 AC Current Measurement using 16
ASC712

4. | Resistance Measurement 19
4.1 Normal value resistance 19
measurement
4.2 Low value resistance 21
measurement

5. | Capacitance Measurement 23

6. | Frequency Measurement 27

7. | Light Measurement 30

8. | Temperature Measurement 32

file:///tmp/calibre_4.99.5_tmp_668y1ztd/pbbubylo_pdf_out/text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
file:///tmp/calibre_4.99.5_tmp_668y1ztd/pbbubylo_pdf_out/text/XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

9. | Humidity Measurement 34
10. | Pressure Measurement 37
10.1 Atmospheric pressure, Altitude 38
measurement
10.2 Air Pressure 43
11. | Rain measurement 46
12. | Soil Moisture Measurement 48
13. | pH Measurement 50
14. | Water Flow Measurement 54
15. | Distance Measurement 56
16. | Knock Detection 59
17. 4-20mAmp Industry Standard 61
Measurement
18. | Water Level Measurement 63
19. | Rotary Position (Encoder) 66
20. | Color Detection 69
21. | Sound Level Measurement 73

Get it now at circuits4you.com

http://circuits4you.com/

This Page intentionally left blank

	1. Getting Started with Arduino
	1.1 Arduino Introduction
	1.2 Arduino IDE basics
	1.3 Arduino Programming
	1.4 Arduino Pin-outs
	2. Arduino based digital code lock
	2.1 Introduction
	2.2 Digital Code Lock Circuit
	2.3 Digital Code Lock Arduino Code
	3. Arduino Temperature Controller
	3.1 Introduction
	3.2 Temperature Controller Circuit
	3.3 Temperature Controller Arduino Code
	4. Arduino Object Counter
	4.1 Introduction
	4.2 Object Counter Circuit
	4.3 Object Counter Arduino Code
	5. Arduino DC Digital Voltmeter
	5.1 Introduction
	5.2 Digital Voltmeter Circuit
	5.3 Digital Voltmeter Arduino Code
	6. Arduino Water Level Controller
	6.1 Introduction
	6.2 Water Level Controller Circuit
	6.3 Water Level Controller Arduino Code
	7. Automatic Light Controller
	7.1 Introduction
	7.2 Automatic Light Controller Circuit
	7.3 Automatic Light Controller Arduino Code
	8. Solar Power Monitor
	8.1 Introduction
	8.2 Solar Power Monitor Circuit
	8.3 Solar Power Monitor Code
	9. Ultrasonic Distance Meter
	9.1 Introduction
	9.2 Ultrasonic Distance Meter Circuit
	9.3 Ultrasonic Distance Meter Arduino Code
	10. Digital Timer
	10.1 Introduction
	10.2 Digital Timer Circuit
	10.3 Digital Timer Arduino Code
	11. Automatic Irrigation System
	11. 1 Introduction
	11.2 Automatic Irrigation System Circuit
	11.3 Automatic Irrigation System Arduino Code
	12. Mood Lamp
	12.1 Introduction
	12.2 Mood Lamp Circuit
	12.3 Mood Lamp Arduino Code
	13. Bluetooth based home automation
	13. 1 Introduction
	13.2 Bluetooth Based Home Automation Circuit
	13.3 Bluetooth based home automation arduino code
	14. Traffic Light Controller
	14.1 Introduction
	14.2 Traffic Light Controller Circuit
	14.3 Traffic Light Controller Code
	15. RPM Meter
	15.1 Introduction
	15.2 RPM Meter Circuit
	15.3 RPM Meter Arduino Code

