A Python Book:
Beginning Python,

Advanced
Python, and Python

Exercises

Author:

Address:

PPPPP

www.EngineeringBooksPdf.com

A Python Book

Revision

1.3a
Date

December 15, 2013
Copyright

Copyright (c) 2009 Dave Kuhlman. All Rights Reserved. This document is subject
to the provisions of the Open Source MIT License
http://www.opensource.org/licenses/mit-license.php.

Abstract

This document is a self-learning document for a course in Python programming.
This course contains (1) a part for beginners, (2) a discussion of several advanced
topics that are of interest to Python programmers, and (3) a Python workbook with
lots of exercises.

Page 2

www.EngineeringBooksPdf.com

A Python Book

Contents

1 Part 1 -- Beginning Python............coooiiiiiiiiiiiiiieceeee e
1.1 Introductions EEC........ccouiiiiiiiiiiiiiieeeeee et
L1T RESOUICES. ..ttt ettt ettt e e
1.1.2 A general description of Python.........cccccooiiiiiiiiiiiineeecc e
1.1.3 Interactive PythOn..........cociiiiiiiiiiiiceeee e
1.2 LeXiCal MALES. ...coueeiuiiriiieiieiieeit ettt ettt ettt e e s
LL201 LU@S ettt st e e
1.2.2 COMIMENTS. ..ceeiiiiiiieeiiiieeeeiitteeesiiteeeesiteeeesstteeeeessreeeessnseeeeessseeessssseeessnnnnnnes
1.2.3 Names and tOKENS.........eeieriiieeeiiiiieeeniieeeeeitee e et e e e e sireeeesaeeeessereeeesssnnnnes
1.2.4 Blocks and indentation.............ceoeveerriueeriieeniiieeniieeeieeesite et e e e e eiieeee e e
1.2.5 DOC SIINES....eeeiiieeiiieeiieeeiie ettt ettt et e ettt e st ee sttt e sbee e sabeeesabeeesaseeeesnnns
1.2.6 Program SIIUCLUTE..........c.eeeruieeeiiieeeiieeeieeeeieeenireeereeeareeereeeesennnsareeesennnsaes
L.2.7 OPEIALOTS.....eveeeeeeiiiieeeeiitee et te e e ettt e e e e ttee e et e e e sabteeesssbbeeeeeeeeseessnnannnnnnnes
1.2.8 AlSO SCC...uuuviieeeiiiie ettt e et ee e ettt e e et e e e et e e e e e e e e araaeeeaaeeeeeeeeannnnnnnnnes
1.2.9 Code eValuation.........cccuuiiieeiiiieeeciieeeeeiveeeeere e e e ereeeeeaaeeeesaereee e s s s nennnnans
1.3 Statements and inSpection -- Preliminaries...........eecvveeeiveeeriiieeriieeeesiieeeeeereeneeenns
1.4 BUilt-IN data-tyPeS.....eeeeueeeriieeiiieeiiee ettt e eieeeeiteestee et e eeateeesateessaeessaeesnnanreeeeens
L.4.T INUIMETIC [YPES.cuutreiauiieeriieeriiteeeitte et ee sttt e sttt e sttt e s bte e s bt e e sabeeessbeeessbeessneesaans
1.4.2 Tuples and LISTS.....ccooueiiiiiiiiiieeeiteee ettt e e e
Ti4.3 SHTINES.c.eiieeiiie ettt ettt et e et e et e et e e sbt e e sabbeesabeeesaseeesaseeeeennns
1.4.3.1 The new string.format method.............ccccevviiiniiiiniiiinieeee e,
1.4.3.2 UNICOAE SIIINZS. ..ccuuteeuiieiieeiieiieeieeeite et ee et ettt et et e e s eeeieeeens

1.4.4 DICHONATIES. ..c.uveeeieiieeieiieeiieeeiieeeriteeestteeetaeestaeesseeessseeessseeessseeensseesssseesnsseens
LiAS FHIES ittt e
1.4.6 Other DULIt-IN tYPES...ceeuriiiiiiieiieeeiteeeiee ettt et e e e
1.4.6.1 The NONE VAIUC/tYPE......veeeerieeiiieeiiie ettt ettt ereeesaee s
1.4.6.2 Bo00lean ValUEs........ccceeeiiiiiiiiiiiiieieeeeseceeee et
1.4.6.3 Sets and fTOZENSELS.cceeriuriieeeiiiieeeeiireeeeereee e e e e e e e e e s e e e eereeeees

1.5 Functions and Classes -- A PreVIEW........cccccviieeriiiiiieeiiiie e eeeee e
1.0 SEALEIMENLS. ..couveiiiieiiieiieeit ettt ettt et eat et e st s e sat e st e e e sabaeeeeabaeeean
1.6.1 AsSSIZNMENt STAEIMENL.eevvieerireeeiieeiiiieeeeieeeiteeetteesieeesbeeessreeessseeeneneesnnns
1.6.2 IMPOTt SEALBIMENL.eiutieeieeiieiieetee ettt ettt e st e et et e e beesate e bt e e abeeeeneeeeeas
1.6.3 Print SEAEIMENL....c..eiiiieiiiitieeite ettt ettt ettt ettt e st e et e e e bt e e eaeeeeas
1.6.4 if: elif: else: StatemMENL.......c..eeviuieiiiiiieiiieeeiee e e e
1.6.5 fOI: STALEMENL....c.ueeruiieiiiiiieriieeteeete ettt ettt ettt et eeanee e
1.6.6 While: SAtEMENL.eoitiiiiiiiiiiiieee et s

www.EngineeringBooksPdf.com

A Python Book

1.6.7 continue and break StatemMents............cecueerieiriiinieniienieeeesteete e
1.6.8 (ry: eXCept: StAtEIMENL.cc..eeiuieriiiiieeieeiee ettt
1.6.9 1QISE STALEIMENL...ccuuiiiiiiiieiiieeitie ettt ettt et e st e et e et e e e e eibebeeeeeeanes
1.6.10 With: StAtEIMENT.....cccueiiiiiiiiiiieeieeeeeeee ettt
1.6.10.1 Writing a CONtEXt MANAZETeervreerureeeriieerireeenireeerreeesireeenereesseneennns
1.6.10.2 Using the with: Statement............ccccueiiiiiiriieiniiiinieee e
LLO. 1T deleniiieeee ettt
1.6.12 CASE SLALBIMENL.eeuieiriiieiieeiieeiee ettt ettt ettt ettt eesaneee s
1.7 Functions, Modules, Packages, and Debugging...........ccceceevviieeniiiinieennieeninenn.
L.7.1 FUNCHIONS. c...eiiiiiitieiee ettt ettt ettt e e et e e e e e
1.7.1.1 The def Statement..........cccueeriiriiiiiiiiieiceieeee et
1.7.1.2 Returning ValUeS.........cccueeeruiiiiiiiiiiieeiieeeiie ettt
L.7.1.3 Par@mELETS. ...ceeuuiieiiiieeiiieeeiie ettt ettt et ettt e et e e bteeebaeesanes
L7 1.4 ATZUIMENLS....coiiiieiiieeiiieeeiteeeieeestee et et eestaeeeteeesabaeesabeeenaseeenseeenanes
1.7.1.5 Local variables........ccceeuiiiiiiiiiiiieieeeesceeeete et
1.7.1.6 Other things to know about functions.............ccecueeenieiinieiinieiinieennns
1.7.1.7 Global variables and the global statement............cccccccevvueeiniiiieeinnnnnen.
1.7.1.8 Doc strings for funCionS............coevveiriiiiriiieniieeeieeee e
1.7.1.9 Decorators for funCtions..........c.cceveerierieenieriieeniceieenee e
L7.2 1ambda.. e e e
1.7.3 Tterators and ZENETAtOTS.civvuiiiriiiieriieeiiee et e e e
L.7.4 MOAUIES.....eoiiiiiiieeeee ettt ettt et
1.7.4.1 Doc strings for modules..............ceeruieiiiiiiiiiiniieenieeeieeeee e
L.7.5 PaCKAZES....eviieiiieeiieeeee ettt et e e e et ae e e e e nees
1.8 CLaASSES. ettt ettt ettt ettt et ettt ettt b ettt e s naeeas
1.8.1 A SIMPIE ClASS.c..eeeuiiiiiiiiiieieee e
1.8.2 Defining Methods......ccccoiiiiiiiiiiiiiiiieeecee e
1.8.3 The CONSLIUCTOT.eeuiieiiieriiieiteeiieeite ettt
1.8.4 Member Variables.cocueiriiiiiiiiiiiieieeeeeeeee e
1.8.5 Calling MethOdS.cooiiiiiiiiiiiiiieieee et
1.8.6 Adding INhErItanCe.ceeiiiiiiriiiiiiiieeieceeeeee e
1.8.7 Class variabIes.coouiiiiirieiiiiiieeeeeeecee e
1.8.8 Class methods and static methods...........coceevieriiiniiiiiineiceceen
1.8.9 PIrOPETLIES. .. eeeeutieeeiiieeeiiie ettt ettt e e e e e et e e s te e e seaee e ebeeesseeensaeeensnneeeeennns
L.8.10 INLEITACES. ..couuieuiiitiieiie ettt et e e e e
1.8.11 INEW-Style ClaSSES.....eiruiiiiiiiiiiiieieeteee e
1.8.12 Doc Strings fOr Classes......cccueevuiiriiiiiieniiiieeeie e
1.8.13 Private MEMDETS......c.coiiiiiiiriiiiiieiiee ettt
1.9 SPECial TasKS.....ceeiuiieeiiieeiie ettt ettt ettt et et e s e e nneeeas
1.9.1 Debugging toO0IS.....cocueeiiiiiiiieiiieieeeee e

www.EngineeringBooksPdf.com

A Python Book

1.9.2 File input and OULPUL.........eeervieeiiieeiieeiee ettt eiee e see e steeeenbeeenneeeeens 78
1.9.3 UL EESES.cuuutiiiiieeiitie ettt ettt ettt e et e et e e e bbeeebeeesabaeeeeeeans 80
1.9.3.1 A simple eXample........cccooviiiiiiniiinienieeieeeeeee e 80
1.9.3.2 UNI EEST SUILES...eeuveeurieiieriteeiieeite et st ettt et e ittt saee e e sanee s 81
1.9.3.3 Additional unittest fEatuIes.cceerveerieriersieenieeeeeeeesee e 83
1.9.3.4 Guidance on Unit TEeSUNE........cocveiviiriiiiiiiiiiiierieccceeeceee e 85

L.9:4 dOCEEST. ...ttt ettt ettt e e 85
1.9.5 The Python database APL..........ccccooiiiiiiiiiiiiiiee e 87
1.9.6 Installing Python packages...........coocueiiriiiiniieiniieiieceieececeeeesiee e 88
1.10 More Python Features and EXEICiSes........ccveevurieriiieeeiiieeniieerieeesieeeeeeiieeee e 89
Part 2 -- Advanced PythOn.........coocuiiiiiiiiiiiee e 90
2.1 Introduction -- Python 201 -- (Slightly) Advanced Python Topics....................... 90
2.2 Regular EXPIESSIONS.ccotiriiiriieiienieeiteeteetee sttt e e 90
2.2.1 Defining regular @XpreSsions.ueeeieeerieeerieeerieeerieeesireeesreessreesnreeeesennns 90
2.2.2 Compiling regular @XPreSSIONS.cccuueerueerrueerrreerireeeieeesireeesseeesssreeeesnnnns 91
2.2.3 Using regular €XPreSSIONS. ...c..eeuierreereeeiierreeteeseeeneeseeeneesieeeneesieeeneesanees 91
2.2.4 Using match objects to extract a value.........c.cceeeeviieiieniiiiiieniiciiec e 92
2.2.5 Extracting multiple 1teMS......cccuueiriiieiriiieiiiieeriee et 93
2.2.6 Replacing multiple 1temS.ceeviuiiiriiiiiriieeriie ettt e e e 94
2.3 TErAtOr ODJECTS..c.uviouieiiriiiniiiiieiieettete ettt sttt et sttt e 96
2.3.1 Example - A generator funCtion.........coccecueeverierienienienieeieneenieenieeere e 98
2.3.2 Example - A class containing a generator method.............ccocccceeiviiiieeennnn. 100
2.3.3 Example - AN iterator ClassS.......c.eeerveeerieeiiiieeeiieeeiieeeite e e e 102
2.3.4 Example - An iterator class that uses yield........cccceevvveeeeriiiieeeiiniiiieeeeeee 104
2.3.5 Example - A list COMPreNenSION.cevuveeeriieeiieeeiieeeiieeeiieeeeeeeirveee e e 105
2.3.6 Example - A generator EXPreSSION.........couuerueerrerrueeneernreeenireeesereeennneees 105
2.4 UNIE TOSES. ettt ettt sttt et e et e e st e e e e e abereeee s 106
2.4.1 Defining UNQt LESES...eeeiuiieeiiieeriieeeiieerieeerieeesteeesteeesbeeeireeertreesseaeesnneeesnnees 106
2.4.1.1 Create a teSt Class....coueivieriieiienieeieeiceeecee e 106

2.5 Extending and embedding Python.............ccccooiiiiiiiiie, 109
2.5.1 Introduction and CONCEPLS........cccviruierieriiiiiieireeiee e 109
2.5.2 EXtension MOAUIES.........ccoueiiiiriiiiiiinierieeiteee e 110
2.5.3 SWIG ...ttt st 112
B o) ST 115
2.5.5 SWIG VS. PYT@X...iiiiiiiiiiieeeee ettt ettt et e s e eaaaeae s 120
2.5.60 CYtROM....iiiiiiiiee ettt ettt et enaeeas 120
2.5.7 EXIENSION [YPES...rteriiriririierieeieenteeteesteeteesreesieesreesseesreesneeseneenseesaneenanes 122
2.5.8 EXtENSION ClASSES.....eirutiiiiiiiieniieeieeniie ettt 122
2.0 PaTSINE..ccuiiiiiiieeeiie ettt ettt ettt ettt e et e et e e e et e ettt e e abeeenbeeeatee s ennnees 122
2.6.1 Special PUIPOSE PATSETS. ...cccuureerurieairieeiieeeiteeeitteesiteesrteesibereeeesaabeeeeeeeanes 123

www.EngineeringBooksPdf.com

A Python Book

2.6.2 Writing a recursive descent parser by hand...........ccccoevieiiiiieiiiieniieennen,
2.6.3 Creating a lexer/tokenizer with PIeX........c.cccoooiiviiiiiniiniiiicece,
2.6.4 A survey of eXiSting t0O0IS.....cocueeriiriiieriiiiierie e
2.6.5 Creating a parser With PLYcooooiiiiiiiiieee e
2.6.6 Creating a parser With pyparsing..........ccccueeevveeriieeeniieeeniie e esieeesiieeeee e
2.6.6.1 Parsing comma-delimited [Ines.............ccooveiiiiiiniiiiiniiiiiiceeee
2.6.6.2 Parsing fUNCLOTS.covuiiiiiiiiiie ettt e
2.6.6.3 Parsing names, phone numbers, etC...........ccovvverrviiiiniieniiieniiieee e
2.6.6.4 A more complex eXample.........cooovveeriiiiiiiiiiiiee e

2.7 GUI APPHCALIONS....uviiiiiieeiiieeiieeeiieeeieeeereeeeree et e eateeeaaeesseeessnaaeeeseesnssaeeens
271 INErOAUCTION. c...eiuiiiiiiieite ettt et e s esnaeees
272 PYGHK ittt ettt e e
2.7.2.1 A simple message dialog DOX......ccueevvuieiriiiiiiieiniiiiieeeeeeeeee e
2.7.2.2 A simple text input dialog DOX.....ccueeeviiiiriieeiiieeiie e
2.7.2.3 A file selection dialog DOX......c.cevvvieriiiiiiiieeieeeieeeeeee e

2.77.3 EBaSYGUIL....ooiiiiiiie et
2.7.3.1 A simple EasyGUI example.........ccocceeeriiiiniiiniiiiniiieeieiieeee e
2.7.3.2 An EasyGUI file open dialog example...........cccceeveerviieniiieniiiieeeennns

2.8 Guidance on Packages and Modules............ccceeviiiriiieniiiiniiieniie e
2.8.1 INErOAUCTION.eiiiiiiiiiiieeieete ettt ettt e st e s esnaeeas
2.8.2 Implementing Packages..........ccceeuiiiiiiniiiiiiiiiiiieieceee e
2.8.3 USING PaCKAZES....ccovutiiiiiiiiiiieiie et
2.8.4 Distributing and Installing Packages........c...ccoouieriiiiniiiiniiiniiieeeee
2.9 ENA MAET.c...coiiiiiieiieeieeeee ettt sttt st e st e e e
2.9.1 Acknowledgements and Thanks............cccecueeeriieriieeniieeniieeeiee e
2.9.2 SEE AlLSO..cuiiiiiieeete et
Part 3 -- Python WoOrkbooK.........cccccoiiiiiiiiiiceee e
3.1 INEOAUCTION.eiiiiiiieiiieeiteee ettt et e
3.2 LeXICal SIUCTUIES. ..ceoutiiiieiieeiteeiie ettt ettt ettt e e
3.2.1 Variables and NAmMES.........cc.eeeiiiiiiiiiiiiiiiieeeieeeee et
3.2.2 LINE SLIUCTULC.....ceiuiieeiiieeiiteeiite ettt ettt st sttt e st e e eanaeeee s
3.2.3 Indentation and program StIUCIUIE...........eerureeriureeriueeerieeeireesrireesireesneeenns
3.3 EXecution MOdEl.......cccooiiiiiiiiiiiiiiiceectceeeeeee e
3.4 Built-in Data TYPeS.....cceeeiiiiiiieeiie ettt svee e eire e e s e snaaeaeeees
34T NUMDETS. ettt ettt e e s
3.4.1.1 Literal representations of NUMDETS.........ccoceviieiiinieiniiieeiieeeieeeae
3.4.1.2 Operators for NUMDETS.........cccooiiiriiiiiineee e
3.4.1.3 Methods 0N NUMDETS.........coriiiiiiniiiiierieeeet et

B4 2 LSS ittt ettt st e s esaaaees
3.4.2.1 Literal representation Of 1iStS........ccovueeiiiiiiiieiniieiniieeeeceeeeeen

Page 6

www.EngineeringBooksPdf.com

A Python Book

3.4.2.2 Operators ON LISES......cccuueiriuieeriieeniieeiieeerreeeireesieeesaeeeseareeeeeesnaaaeeees
3.4.2.3 Methods 0N LISES....c.uviiieeiiiiie et e e e e e e e e
3.4.2.4 LiSt COMPIENENSIONS.eeiveiriieiieriieiierreete ettt ereee e
B3 SHIINES..eteeiiieeiiie ettt ettt et e et e e st e et e e e abeeebbeeeabeeebteesabeeeenbeeeeenan
3.4.3.1 CRArACLEIS....eoueieitieiieeiieeie ettt ettt ettt ettt ettt e e eeieeee e
3.4.3.2 Operators ON SIIINES.cccuueerureerueerreternieeenireeeniteeesireessireesseeeessesaeeees
3.4.3.3 Methods On SIIINES.....ccccvtiiiiiiiiiiieniieeeiie ettt
3.4.3.4 RAW SIINES....eiiiiiiiiiiieiiiieeiiee ettt et e et e et e e s e st e e e e enaaeaeeens
3.4.3.5 UNICOAE SIINEZS..ceruvrieruiiiiriieeniieenieeeiteeeiteeeiteesiteesieeesabbeeeeeesaneaeeens
344 DICHONATIES. .c.uveeeutieiieeiieeniieeteestt et e sttt et e et e bt e st e e bt e sabeebeesaneebeesaeeeaee
3.4.4.1 Literal representation of diCtionaries..........cceevevveerveernieeenieeeeessnneeenn.
3.4.4.2 Operators 0N diCHONATIES.eevterrrerreenieeereenreeteenreereesreeireeesnneees
3.4.4.3 Methods on diCtIONATIES.ccuvvveeeeiiiieeeeiiieeeeireeeeeireeeeereeeeerreeeeeens
BuAS FHIES e s
3.4.6 A few miscellaneous data tyPeS.......eeeueeeriieerieeeniieeiieeeeriieeeeeeriiieeeeeeens
R T S0 B (0) 1 L= PSP
3.4.6.2 The booleans True and False.........cccccccuveiirviiiiiiiiiiieeeiieeeeee e
3.5 SEABIMENLS. .c..eeiiiiiiiieeiieeieeet ettt ettt ettt ettt e bt st e e s bt e e sbaeeesnaeees
3.5.1 AsSSIiZNMENt StALEIMENL.....cccuuveiruiieeriiieiiieeeiteeeiteeeieeestteesbeeesbeeesabeessireeennns
3.5.2 PNt SEALEIMENL...ccuvieeirieeeiieeeieeeiteeeieeeetteeeteeeebeeesabeeessseeesssnneeeeesnsssneeeeans
3.5.3 if: StAtEMENT EXETCISES. .eeeurieeerieeireeeireeerteeeieeesreeesreeessreeensreeesseessneessseens
3.5.4 fOr: StALEMENE EXETCISES. ...eouvieurerureeirerreeteenteenieesreenteesereesreeessaneeesnereeenans
3.5.5 while: StatemMent EXEICISES. ..c.uuverurieiierirerieenieeteente e ere e e e e e e
3.5.6 break and continue StateMENLS.cevuverrieerierrieenieeieente et
3.5.7 Exceptions and the try:except: and raise statements............c.cceeeerrvvereeennnne
3.0 FUNCHIONS.eiiiiieiiieeeeieee ettt e e et e e et e e e et eeeeenbaeeeesnnsaeesesnsssaaaeeeeaeens
3.6.1 Optional arguments and default values............ccccceveeniieiiiiniiciieeee.
3.6.2 Passing functions as argUmeNtS...........ceeerveeerveeeriieerneeennireesieeeesirreeeessnnnns
3.6.3 Extra args and KEYWOrd args..........ccueevueeeriiiieniiieiniieenieeesiieeeeeeeireeee e e
3.6.3.1 Order of arguments (positional, extra, and keyword args)..................
3.6.4 Functions and duck-typing and polymorphiSm............ceeceeeveenieeiniieennnnnen.
3.6.5 Recursive fUNCHONS.cccuiiiiiriiiriieieeie et
3.6.6 Generators and ILETALOTS.cecueeruierreerieerteeniee ettt ettt e e eneees
3.7 Object-oriented programming and ClasSes.........cceerrveerriieriieeriieeniieeeeeeiveeenn
3.7.1 The CONSTIUCTOT. c....eiutiiiiieiieiiieeite ettt ettt sttt e st e e
3.7.2 Inheritance -- Implementing a subclass..........cccceeeveerieriieninieeniecieeeee
3.7.3 Classes and polymorphiSm.........ccccceevuiiiiiiriiiiieniiiiiecnececeeec e
3.7.4 Recursive calls to MEthOds........cocueeviiriiiniiiiiiiieee e
3.7.5 Class variables, class methods, and static methodS........ceevveeeeveeieneeeeeeinns
3.7.5.1 Decorators for classmethod and staticmethod...........c.cccevvveeeeireennnnnn.

Page 7

www.EngineeringBooksPdf.com

A Python Book

3.8 Additional and Advanced TOPICS.......ccccueeriiiieriiieeriie et 234
3.8.1 Decorators and how to implement them...........cccccceceeniniiiniiniiinineeee 234
3.8.1.1 Decorators with arguments............cccceevvervieerieeniienieenieenee e 235
3.8.1.2 Stacked decorators...........ceoueriieerieeiiiinienieeiie ettt 236
3.8.1.3 More help with decOorators..........ccooveeriiiieriiieeniieeiee e 238

3.8.2 THEIaADIES. ...ce ittt 239
3.8.2.1 A few preliminaries on Iterables..........c.c.ccccooviiniiiiiiniiiniiiceen 239
3.8.2.2 More help with iterables...........ccooceiriiiiiiiiiniiiicceeen 240

3.9 Applications and RECIPES.......c.eeieruiiiiiiiiiriiiiiniieeieeiee ettt 240
3.9.1 XML -- SAX, minidom, ElementTree, Lxml............cooooviiiiiiiiiniiiiinnnn. 241
3.9.2 Relational database aCCESS.........eeruiiriirriiiriieiienieeiteete ettt 249
3.9.3 CSV -- comma separated value files.........ccccooveriiiniiiiiiniiniicecce, 255
3.9.4 YAML and PYYAML.....oooiiiiieeee et 256
BL9.5 JSOMuuiiiiiieee ettt e 258
Part 4 -- Generating Python Bindings for XML.........ccecciviiiiiniiiiniiieeeeieeee e 260
4.1 INErOUCTION. ..ceuitiiiiiieeitee ettt ettt ettt et e st e st e e st e e e e eeaeee 260
4.2 Generating the COUE........uuiiiiiiiiiiiieiieceee ettt et 261
4.3 Using the generated code to parse and export an XML document..................... 263
4.4 Some command line options you might want to Know..........cccceevveerniiiieeennnnns 263
4.5 The graphical front-end............cocoeeriiiiiiiiiiiiee e 264
4.6 Adding application-specific beRAVIOT.......c.c.coviiiiiiiiiiiiieieeeee e 265
4.6.1 Implementing cuStom SUDCIASSES.......cccueeiriiiiriiiieiiieeeiieee e 265
4.6.2 Using the generated "API" from your application..........cccceecuvveeeeenninneeeenn. 266
4.6.3 A combined approach..........c.cceccveeeiiiiiiiieiiieeee e 267
4.7 Special SItUAtIONS ANA USES....ccevveeruieerireeriieerireerieeesreeesreesstreesnsreesssneseeaesssnnns 269
4.7.1 Generic, type-independent ProCesSINg.........ccevveerueereeriueeneenseeeneerineenneennns 269
4.7.1.1 Step 1 -- generate the bIndings........cccceeviriiiniiiiiiniieiniieee e 270
4.7.1.2 Step 2 -- add application-specific code..........ccervuierniirrnieeinieenneennn. 270
4.7.1.3 Step 3 -- write a test/driver harness.........ccceeecveeeriieeeriiiieeeeeniiieee e 274
4.7.1.4 Step 4 -- run the test appliCAION.....ccc.eeeriiiiriiiiiiiieiieeeeee e 276

4.8 SOME NINTS.....eiiiiiiiiiiiiie ettt ettt e e e e e 276
4.8.1 Children defined with maxOccurs greater than 1...........ccccceeviieeniieennnnnee. 276
4.8.2 Children defined with simple NUMETIC LYPES.......eevueeirieiiriiieiiieeieeeeiee 277
4.8.3 The type of an element's character CONteNt..........cceeevveeeeieeerciieenieeerveeennne 277
4.8.4 Constructors and their default values.............ccoceeviiniiiniiiiiiinicicce, 271

Page 8

www.EngineeringBooksPdf.com

A Python Book

Preface

This book is a collection of materials that I've used when conducting Python training and
also materials from my Web site that are intended for self-instruction.

You may prefer a machine readable copy of this book. You can find it in various formats
here:

e HTML - http://www.davekuhlman.org/python_book_01.html

e PDF -- http://www.davekuhlman.org /python_book_01.pdf

e ODF/OpenOffice -- http://www.davekuhlman.org /python_book_01.odt
And, let me thank the students in my Python classes. Their questions and suggestions
were a great help in the preparation of these materials.

Page 9

www.EngineeringBooksPdf.com

A Python Book

1 Part 1 -- Beginning Python

1.1 Introductions Etc

Introductions

Practical matters: restrooms, breakroom, lunch and break times, etc.
Starting the Python interactive interpreter. Also, [Python and Idle.
Running scripts

Editors -- Choose an editor which you can configure so that it indents with 4 spaces, not
tab characters. For a list of editors for Python, see:
http://wiki.python.org/moin/PythonEditors. A few possible editors:

e SciTE -- http://www.scintilla.org/SciTE.html.

e MS Windows only -- (1) TextPad -- http://www.textpad.com; (2) UltraEdit --
http://www.ultraedit.com/.

e Jed -- See http://www.jedsoft.org/jed/.

e Emacs -- See http://www.gnu.org/software/emacs/ and
http://www.xemacs.org/fag/xemacs-faq.html.

e jEdit -- Requires a bit of customization for Python -- See http://jedit.org.

e Vim -- http://www.vim.org/

e Geany -- http://www.geany.org/

e And many more.
Interactive interpreters:

e python

e ipython

e Idle
IDEs -- Also see
http://en.wikipedia.org/wiki/List_of_integrated_development_environments_for_Python:

e PyWin -- MS Windows only. Available at:
http://sourceforge.net/projects/pywin32/.

WingIDE -- See http://wingware.com/wingide/.

Eclipse -- http://eclipse.org/. There is a plug-in that supports Python.
Kdevelop -- Linux/KDE -- See http://www.kdevelop.org/.

Eric -- Linux KDE? -- See http://eric-1de.python-projects.org/index.html
Emacs and SciTE will evaluate a Python buffer within the editor.

Page 10

www.EngineeringBooksPdf.com

A Python Book

1.1.1 Resources

Where else to get help:

Python home page -- http://www.python.org

Python standard documentation -- http://www.python.org/doc/.

You will also find links to tutorials there.

FAQs -- http://www.python.org/doc/faq/.

The Python Wiki -- http://wiki.python.org/

The Python Package Index -- Lots of Python packages --
https://pypi.python.org/pypi

Special interest groups (SIGs) -- http://www.python.org/sigs/

Other python related mailing lists and lists for specific applications (for example,
Zope, Twisted, etc). Try: http://dir.gmane.org/search.php?match=python.
http://sourceforge.net -- Lots of projects. Search for "python".

USENET -- comp.lang.python. Can also be accessed through Gmane:
http://dir.gmane.org/gmane.comp.python.general.

The Python tutor email list -- http://mail.python.org/mailman/listinfo/tutor

Local documentation:

On MS Windows, the Python documentation is installed with the standard
installation.

Install the standard Python documentation on your machine from
http://www.python.org/doc/.

pydoc. Example, on the command line, type: pydoc re.

Import a module, then view its .__doc___ attribute.

At the interactive prompt, use help (ob 7). You might need to import it first.
Example:

>>> import urllib
>>> help(urllib)
In IPython, the question mark operator gives help. Example:
In [13]: open?
Type: builtin_function_or_method
Base Class: <type 'builtin_function_or_method'>
String Form: <built-in function open>
Namespace: Python builtin
Docstring:
open (name[, mode[, buffering]]) -> file object
Open a file using the file() type, returns a file
object.
Constructor Docstring:
X._ init_ (...) initializes x; see
X.__class__.__doc__ for signature
Page 11

www.EngineeringBooksPdf.com

A Python Book

Callable: Yes
Call def: Calling definition not available.Call
docstring:

X.__call (...) <==> x(...)

1.1.2 A general description of Python

Python is a high-level general purpose programming language:

Because code is automatically compiled to byte code and executed, Python is
suitable for use as a scripting language, Web application implementation
language, etc.

Because Python can be extended in C and C++, Python can provide the speed
needed for even compute intensive tasks.

Because of its strong structuring constructs (nested code blocks, functions,
classes, modules, and packages) and its consistent use of objects and
object-oriented programming, Python enables us to write clear, logical
applications for small and large tasks.

Important features of Python:

Built-in high level data types: strings, lists, dictionaries, etc.

The usual control structures: if, if-else, if-elif-else, while, plus a powerful
collection iterator (for).

Multiple levels of organizational structure: functions, classes, modules, and
packages. These assist in organizing code. An excellent and large example is the
Python standard library.

Compile on the fly to byte code -- Source code is compiled to byte code without a
separate compile step. Source code modules can also be "pre-compiled" to byte
code files.

Object-oriented -- Python provides a consistent way to use objects: everything is
an object. And, in Python it is easy to implement new object types (called classes
in object-oriented programming).

Extensions in C and C++ -- Extension modules and extension types can be written
by hand. There are also tools that help with this, for example, SWIG, sip, Pyrex.
Jython is a version of Python that "plays well with" Java. See: The Jython Project
-- http://www.jython.org/Project/.

Some things you will need to know:

Python uses indentation to show block structure. Indent one level to show the
beginning of a block. Out-dent one level to show the end of a block. As an
example, the following C-style code:

if (x)
{

Page 12

www.EngineeringBooksPdf.com

A Python Book

in Python would be:

if x:
if y:
£1()
£2 ()

And, the convention is to use four spaces (and no hard tabs) for each level of indentation.
Actually, it's more than a convention; it's practically a requirement. Following that
"convention" will make it so much easier to merge your Python code with code from
other sources.

An overview of Python:

e A scripting language -- Python is suitable (1) for embedding, (2) for writing small
unstructured scripts, (3) for "quick and dirty" programs.

e Not a scripting language -- (1) Python scales. (2) Python encourages us to write
code that is clear and well-structured.

e Interpreted, but also compiled to byte-code. Modules are automatically compiled
(to .pyc) when imported, but may also be explicitly compiled.

e Provides an interactive command line and interpreter shell. In fact, there are
several.

e Dynamic -- For example:

o Types are bound to values, not to variables.

o Function and method lookup is done at runtime.

o Values are inspect-able.

o There is an interactive interpreter, more than one, in fact.
o You can list the methods supported by any given object.

e Strongly typed at run-time, not compile-time. Objects (values) have a type, but
variables do not.

e Reasonably high level -- High level built-in data types; high level control
structures (for walking lists and iterators, for example).

e Object-oriented -- Almost everything is an object. Simple object definition. Data
hiding by agreement. Multiple inheritance. Interfaces by convention.
Polymorphism.

e Highly structured -- Statements, functions, classes, modules, and packages enable
us to write large, well-structured applications. Why structure? Readability,
locate-ability, modifiability.

e Explicitness

Page 13

www.EngineeringBooksPdf.com

A Python Book

First-class objects:

o Definition: Can (1) pass to function; (2) return from function; (3) stuff into a
data structure.

o Operators can be applied to values (not variables). Example: f (x) [3]

Indented block structure -- "Python is pseudo-code that runs."

Embedding and extending Python -- Python provides a well-documented and

supported way (1) to embed the Python interpreter in C/C++ applications and (2)

to extend Python with modules and objects implemented in C/C++.

o In some cases, SWIG can generate wrappers for existing C/C++ code
automatically. See http://www.swig.org/

o Cython enables us to generate C code from Python and to "easily" create
wrappers for C/C++ functions. See
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/

o To embed and extend Python with Java, there is Jython. See
http://www.jython.org/

Automatic garbage collection. (But, there is a gc module to allow explicit control

of garbage collection.)

Comparison with other languages: compiled languages (e.g. C/C++); Java; Perl,

Tcl, and Ruby. Python excells at: development speed, execution speed, clarity and

maintainability.

Varieties of Python:

o CPython -- Standard Python 2.x implemented in C.

o Jython -- Python for the Java environment -- http://www.jython.org/

o PyPy -- Python with a JIT compiler and stackless mode -- http://pypy.org/

o Stackless -- Python with enhanced thread support and microthreads etc. --

http://www.stackless.com/

IronPython -- Python for .NET and the CLR -- http://ironpython.net/

o Python 3 -- The new, new Python. This is intended as a replacement for
Python 2.x. -- http://www.python.org/doc/. A few differences (from Python
2.X):

m The print statement changed to the print function.

Strings are unicode by default.

Classes are all "new style" classes.

Changes to syntax for catching exceptions.

Changes to integers -- no long integer; integer division with automatic

convert to float.

m More pervasive use of iterables (rather than collections).

m Etc.

For a more information about differences between Python 2.x and Python 3.x,

see the description of the various fixes that can be applied with the 2t o3 tool:

(0]

Page 14

www.EngineeringBooksPdf.com

A Python Book

http://docs.python.org/3/library/2to3.html#fixers
The migration tool, 2t 03, eases the conversion of 2.x code to 3.x.
e Also see The Zen of Python -- http://www.python.org/peps/pep-0020.html. Or, at
the Python interactive prompt, type:

‘ >>> import this

1.1.3 Interactive Python

If you execute Python from the command line with no script (no arguments), Python
gives you an interactive prompt. This is an excellent facility for learning Python and for
trying small snippets of code. Many of the examples that follow were developed using
the Python interactive prompt.

Start the Python interactive interpreter by typing python with no arguments at the
command line. For example:

$ python

Python 2.6.1 (r261:67515, Jan 11 2009, 15:19:23)

[GCC 4.3.2] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>> print 'hello'

hello

>>>

You may also want to consider using IDLE. IDLE is a graphical integrated development
environment for Python; it contains a Python shell. It is likely that Idle was installed for
you when you installed Python. You will find a script to start up IDLE in the
Tools/scripts directory of your Python distribution. IDLE requires Tkinter.

In addition, there are tools that will give you a more powerful and fancy Python
interactive interpreter. One example is IPython, which is available at
http://ipython.scipy.org/.

1.2 Lexical matters

1.2.1 Lines

e Python does what you want it to do most of the time so that you only have to add
extra characters some of the time.

e Statement separator is a semi-colon, but is only needed when there is more than
one statement on a line. And, writing more than one statement on the same line is
considered bad form.

e Continuation lines -- A back-slash as last character of the line makes the

Page 15

www.EngineeringBooksPdf.com

A Python Book

following line a continuation of the current line. But, note that an opening
"context" (parenthesis, square bracket, or curly bracket) makes the back-slash
unnecessary.

1.2.2 Comments

Everything after "#" on a line is ignored. No block comments, but doc strings are a
comment in quotes at the beginning of a module, class, method or function. Also, editors
with support for Python often provide the ability to comment out selected blocks of code,
usually with "##".

1.2.3 Names and tokens

e Allowed characters: a-z A-Z 0-9 underscore, and must begin with a letter or
underscore.
Names and identifiers are case sensitive.
Identifiers can be of unlimited length.
Special names, customizing, etc. -- Usually begin and end in double underscores.
Special name classes -- Single and double underscores.
o Single leading single underscore -- Suggests a "private" method or variable
name. Not imported by "from module import *".
o Single trailing underscore -- Use it to avoid conflicts with Python keywords.
o Double leading underscores -- Used in a class definition to cause name
mangling (weak hiding). But, not often used.
e Naming conventions -- Not rigid, but:
o Modules and packages -- all lower case.
o Globals and constants -- Upper case.
o Classes -- Bumpy caps with initial upper.
o
O

Methods and functions -- All lower case with words separated by underscores.
Local variables -- Lower case (with underscore between words) or bumpy
caps with initial lower or your choice.
o Good advice -- Follow the conventions used in the code on which you are
working.
e Names/variables in Python do not have a type. Values have types.

1.2.4 Blocks and indentation

Python represents block structure and nested block structure with indentation, not with
begin and end brackets.

The empty block -- Use the pass no-op statement.

Benefits of the use of indentation to indicate structure:

Page 16

www.EngineeringBooksPdf.com

A Python Book

e Reduces the need for a coding standard. Only need to specify that indentation is 4
spaces and no hard tabs.
e Reduces inconsistency. Code from different sources follow the same indentation
style. It has to.
e Reduces work. Only need to get the indentation correct, not both indentation and
brackets.
e Reduces clutter. Eliminates all the curly brackets.
e Ifit looks correct, it is correct. Indentation cannot fool the reader.
Editor considerations -- The standard is 4 spaces (no hard tabs) for each indentation level.
You will need a text editor that helps you respect that.

1.2.5 Doc strings

Doc strings are like comments, but they are carried with executing code. Doc strings can
be viewed with several tools, e.g. help (), obJj.__doc__, and, in IPython, a question
mark (?) after a name will produce help.

A doc string is written as a quoted string that is at the top of a module or the first lines
after the header line of a function or class.

We can use triple-quoting to create doc strings that span multiple lines.
There are also tools that extract and format doc strings, for example:

e pydoc -- Documentation generator and online help system --
http://docs.python.org/lib/module-pydoc.html.
e epydoc -- Epydoc: Automatic API Documentation Generation for Python --
http://epydoc.sourceforge.net/index.html
e Sphinx -- Can also extract documentation from Python doc strings. See
http://sphinx-doc.org/index.html.
See the following for suggestions and more information on doc strings: Docstring
conventions -- http://www.python.org/dev/peps/pep-0257/.

1.2.6 Program structure

e [Execution -- def, class, etc are executable statements that add something to the
current name-space. Modules can be both executable and import-able.
Statements, data structures, functions, classes, modules, packages.

Functions

Classes

Modules correspond to files with a "*.py" extension. Packages correspond to a
directory (or folder) in the file system; a package contains a file named
"__init__.py". Both modules and packages can be imported (see section import

Page 17

www.EngineeringBooksPdf.com

A Python Book

statement).
e Packages -- A directory containing a file named "__init__.py". Can provide
additional initialization when the package or a module in it is loaded (imported).

1.2.7 Operators

e See: http://docs.python.org/ref/operators.html. Python defines the following
operators:

+ —
<< >>
< >

*x / // %

A R X
>

= >= —— l= <>

The comparison operators <> and ! = are alternate spellings of the same operator.
! = is the preferred spelling; <> is obsolescent.
e Logical operators:

‘ and or is not in

e There are also (1) the dot operator, (2) the subscript operator [], and the
function/method call operator ().

e For information on the precedences of operators, see the table at
http://docs.python.org/2/reference/expressions.html#operator-precedence, which
is reproduced below.

e For information on what the different operators do, the section in the "Python
Language Reference" titled "Special method names" may be of help:
http://docs.python.org/2/reference/datamodel.html#special-method-names
The following table summarizes the operator precedences in Python, from lowest
precedence (least binding) to highest precedence (most binding). Operators on the
same line have the same precedence. Unless the syntax is explicitly given,
operators are binary. Operators on the same line group left to right (except for
comparisons, including tests, which all have the same precedence and chain from
left to right -- see section 5.9 -- and exponentiation, which groups from right to

left):
Operator Description
lambda Lambda expression
or Boolean OR
and Boolean AND
not x Boolean NOT
in, not in Membership tests
is, 1is not Identity tests
<, <=, >, >=, <>, !=, == Comparisons
| Bitwise OR
~ Bitwise XOR
& Bitwise AND
<<, >> Shifts
Page 18

www.EngineeringBooksPdf.com

A Python Book

+, -

*I /I %
remainder

R, =%

~X

* x

x.attribute

X [index]

X [index:index]

f (arguments...)
(expressions...)
[expressions...]
{key:datum. ..}
‘expressions...’

Addition and subtraction
Multiplication, division,

Positive, negative
Bitwise not
Exponentiation
Attribute reference
Subscription
Slicing

Function call
Binding or tuple display
List display
Dictionary display
String conversion

e Note that most operators result in calls to methods with special names, for
example __add__,__sub__,__mul__,etc. See Special method names
http://docs.python.org/2/reference/datamodel. html#special-method-names
Later, we will see how these operators can be emulated in classes that you define
yourself, through the use of these special names.

1.2.8 Also see

For more on lexical matters and Python styles, see:

e Code Like a Pythonista: Idiomatic Python --
http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html.

e Style Guide for Python Code -- http://www.python.org/dev/peps/pep-0008/

e The flake8 style checking program. See https://pypi.python.org/pypi/flake8. Also
see the pylint code checker: https://pypi.python.org/pypi/pylint.

1.2.9 Code evaluation

Understanding the Python execution model -- How Python evaluates and executes your
code.

Evaluating expressions.

Creating names/variables -- Binding -- The following all create names (variables) and
bind values (objects) to them: (1) assignment, (2) function definition, (3) class definition,
(4) function and method call, (5) importing a module, ...

First class objects -- Almost all objects in Python are first class. Definition: An object is
first class if: (1) we can put it in a structured object; (2) we can pass it to a function; (3)
we can return it from a function.

References -- Objects (or references to them) can be shared. What does this mean?

e The object(s) satisfy the identity test operator is.

Page 19

www.EngineeringBooksPdf.com

A Python Book

e The built-in function 1d () returns the same value.

e The consequences for mutable objects are different from those for immutable
objects.

e Changing (updating) a mutable object referenced through one variable or
container also changes that object referenced through other variables or
containers, because it is the same object.

e del () -- The built-in function del () removes a reference, not (necessarily) the
object itself.

1.3 Statements and inspection -- preliminaries

print -- Example:

print obj
print "one", "two", 'three'

for: -- Example:

stuff = ['aa', 'bb', 'cc']
for item in stuff:
print item

Learn what the type of an object is -- Example:

type (0b7)

Learn what attributes an object has and what it's capabilities are -- Example:

dir (ob7j)
value = "a message"
dir (value)

Get help on a class or an object -- Example:

help (str)

help (" u)

value = "abc"
help (value)

help (value.upper)

In IPython (but not standard Python), you can also get help at the interactive prompt by
typing "?" and "??" after an object. Example:

In [48]: a = "'
In [49]: a.upper?
Type: builtin_function_or_method
String Form:<built-in method upper of str object at 0x7£f1c426e0508>
Docstring:
S.upper () —-> string
Page 20

www.EngineeringBooksPdf.com

A Python Book

‘Return a copy of the string S converted to uppercase.

1.4 Built-in data-types

For information on built-in data types, see section Built-in Types --
http://docs.python.org/lib/types.html in the Python standard documentation.

1.4.1 Numeric types
The numeric types are:

e Plain integers -- Same precision as a C long, usually a 32-bit binary number.
e Long integers -- Define with 100L. But, plain integers are automatically
promoted when needed.
e Floats -- Implemented as a C double. Precision depends on your machine. See
sys.float_info.
e Complex numbers -- Define with, for example, 3 or complex (3.0, 2.0).
See 2.3.4 Numeric Types -- int, float, long, complex --
http://docs.python.org/lib/typesnumeric.html.

Python does mixed arithmetic.

Integer division truncates. This is changed in Python 3. Use f1oat (n) to force coercion
to a float. Example:

In [8]: a = 4

In [9]: b =5

In [10]: a / b

Out[10]: O # possibly wrong?
In [11]: float(a) / b

OQut[1l1l]: 0.8

Applying the function call operator (parentheses) to a type or class creates an instance of
that type or class.

Scientific and heavily numeric programming -- High level Python is not very efficient for
numerical programming. But, there are libraries that help -- Numpy and SciPy -- See:
SciPy: Scientific Tools for Python -- http://scipy.org/

1.4.2 Tuples and lists
List -- A list is a dynamic array/sequence. It is ordered and indexable. A list is mutable.
List constructors: []1, 1ist ().

range () and xrange () :

Page 21

www.EngineeringBooksPdf.com

A Python Book

e range (n) creates a list of n integers. Optional arguments are the starting integer
and a stride.
e xrange is like range, except that it creates an iterator that produces the items
in the list of integers instead of the list itself.
Tuples -- A tuple is a sequence. A tuple is immutable.

Tuple constructors: (), but really a comma; also tuple ().
Tuples are like lists, but are not mutable.

Python lists are (1) heterogeneous (2) indexable, and (3) dynamic. For example, we can
add to a list and make it longer.

Notes on sequence constructors:

e To construct a tuple with a single element, use (x,) ; a tuple with a single
element requires a comma.
e You can spread elements across multiple lines (and no need for backslash
continuation character "\").
e A comma can follow the last element.
The length of a tuple or list (or other container): len (mylist).

Operators for lists:

e Try:1listl + 1list2,1listl * n,listl += 1list2,etc.
e Comparison operators: <, ==, >=, etc.
e Test for membership with the in operator. Example:

In [77]: a = [11, 22, 33]
In [78]: a

Out [78] [11, 22, 33]

In [79]: 22 in a

Out[79]: True

In [80]: 44 in a

Out [80]: False

Subscription:

Indexing into a sequence
Negative indexes -- Effectively, length of sequence plus (minus) index.
Slicing -- Example: data[2:5]. Default values: beginning and end of list.

e Slicing with strides -- Example: data[::2].
Operations on tuples -- No operations that change the tuple, since tuples are immutable.
We can do iteration and subscription. We can do "contains" (the in operator) and get the
length (the 1en () operator). We can use certain boolean operators.

Operations on lists -- Operations similar to tuples plus:

e Append --mylist.append(newitem).

Page 22

www.EngineeringBooksPdf.com

A Python Book

e Insert--mylist.insert (index, newitem). Note on efficiency: The
insert method is not as fast as the append method. If you find that you need
to do a large number of mylist.insert (0, ob7j) (thatis, inserting at the
beginning of the list) consider using a deque instead. See:
http://docs.python.org/2/library/collections.html#collections.deque. Or, use
append and reverse.

e Extend -mylist.extend(anotherlist). Alsocanuse + and +=.

e Remove --mylist.remove (item) andmylist.pop (). Note that
append () together with pop () implements a stack.

e Delete -- del mylist [index].

e Pop -- Get last (right-most) item and remove from list -- mylist .pop ().

List operators -- +, *, etc.

For more operations and operators on sequences, see:
http://docs.python.org/2/library/stdtypes.html#sequence-types-str-unicode-list-tuple-byte
array-buffer-xrange.

Exercises:

e Create an empty list. Append 4 strings to the list. Then pop one item off the end
of the list. Solution:

In [25]: a = []

In [26]: a.append('aaa')

In [27] a.append ('bbb"')

In [28]: a.append('ccc')

In [29]: a.append('ddd')

In [30]: print a

['aaa', 'bbb', 'ccc', 'ddd']
In [31]: a.pop()

Out [31] 'ddd'

e Use the for statement to print the items in the list. Solution:

In [32]: for item in a:
R print item

e Use the string join operation to concatenate the items in the list. Solution:

In [33]: "||'.join(a)
Out [33]: 'aaal| |bbb]| |ccc'

e Use lists containing three (3) elements to create and show a tree:

In [37]: b = ['bb', None, None]

In [38]: ¢ = ['cc', None, None]

In [39]: root = ['aa', b, c]
Page 23

www.EngineeringBooksPdf.com

A Python Book

In [40]:

In [40]:

In [40]: def show_tree(t):
e if not t:
50008 return
NP print t[0]
50008 show_tree(t[1])
50008 show_tree(t[2])

In [41]: show_tree(root)

aa

bb

ee

Note that we will learn a better way to represent tree structures when we cover
implementing classes in Python.

1.4.3 Strings

Strings are sequences. They are immutable. They are indexable. They are iterable.

For operations on strings, see http://docs.python.org/lib/string-methods.html or use:

‘>>> help (str)

Or:

\>>> dir ("abc")

String operations (methods).
String operators, e.g. +, <, <=, ==, etc..
Constructors/literals:

e Quotes: single and double. Escaping quotes and other special characters with a
back-slash.

e Triple quoting -- Use triple single quotes or double quotes to define multi-line
strings.

e str () -- The constructor and the name of the type/class.

e 'aSeparator'.join (alList)

e Many more.

Escape characters in strings -- \t, \n, \\, etc.

String formatting -- See:
http://docs.python.org/2/library/stdtypes.html#string-formatting-operations

Examples:

‘In [18] : name = 'dave'

Page 24

www.EngineeringBooksPdf.com

A Python Book

In [19]: size = 25

In [20]: factor = 3.45

In [21]: print 'Name: %s Size: %d Factor: $3.4f' $ (name, size,
factor,)

Name: dave Size: 25 Factor: 3.4500

In [25]: print 'Name: %s Size: %d Factor: %$08.4f' % (name, size,
factor,)

Name: dave Size: 25 Factor: 003.4500

If the right-hand argument to the formatting operator is a dictionary, then you can
(actually, must) use the names of keys in the dictionary in your format strings. Examples:

In [115]: values = {'vegetable': 'chard', 'fruit': 'nectarine'}
In [116]: 'I love % (vegetable)s and I love % (fruit)s.' % values
Out[1l16]: 'I love chard and I love nectarine.'

Also consider using the right justify and left justify operations. Examples:
mystring.rjust (20), mystring.1just (20, ':').

In Python 3, the st r. format method is preferred to the string formatting operator.
This method is also available in Python 2.7. It has benefits and advantages over the string
formatting operator. You can start learning about it here:
http://docs.python.org/2/library/stdtypes.html#string-methods

Exercises:

e Use a literal to create a string containing (1) a single quote, (2) a double quote, (3)
both a single and double quote. Solutions:

"Some 'quoted' text."
'Some "quoted" text.'
'Some "quoted" \'extra\' text.'

e Write a string literal that spans multiple lines. Solution:

"""This string
spans several lines
because it is a little long.

mmn

e Use the string join operation to create a string that contains a colon as a
separator. Solution:

>>> content = []

>>> content.append('finch')
>>> content.append ('sparrow')
>>> content.append ('thrush')
>>> content.append('jay"')

>>> contentstr = ':'.join (content)
>>> print contentstr
finch:sparrow:thrush: jay

e Use string formatting to produce a string containing your last and first names,

Page 25

www.EngineeringBooksPdf.com

A Python Book

separated by a comma. Solution:

>>> first = 'Dave'
>>> last = 'Kuhlman'
>>> full = '%$s, %s' % (last, first,)

>>> print full
Kuhlman, Dave

Incrementally building up large strings from lots of small strings -- the old way -- Since
strings in Python are immutable, appending to a string requires a re-allocation. So, it is
faster to append to a list, then use join. Example:

In [25]: strlist = []

In [26]: strlist.append('Line #1'")
In [27]: strlist.append('Line #2')
In [28]: strlist.append('Line #3')
In [29]: str = '"\n'.join(strlist)
In [30]: print str

Line #1

Line #2

Line #3

Incrementally building up large strings from lots of small strings -- the new way -- The
+= operation on strings has been optimized. So, when you do this strl += str2,
even many times, it is efficient.

The t ranslate method enables us to map the characters in a string, replacing those in
one table by those in another. And, the maket rans function in the st ring module,
makes it easy to create the mapping table:

import string

def test () :
a = 'axbycz'
t = string.maketrans('abc', '123'")
print a
print a.translate(t)

test ()

1.4.3.1 The new string.format method

The new way to do string formatting (which is standard in Python 3 and perhaps
preferred for new code in Python 2) is to use the string. format method. See here:

e http://docs.python.org/2/library/stdtypes.html#str.format

e http://docs.python.org/2/library/string.html#format-string-syntax

e http://docs.python.org/2/library/string. html#format-specification-mini-language
Some examples:

Page 26

www.EngineeringBooksPdf.com

A Python Book

In [1]: 'aaa {1} bbb {0} ccc {1} ddd'.format ('xx', 'yy',)
Out[l]: 'aaa yy bbb xx ccc yy ddd'

In [2]: '"number: {0:05d} ok'.format (25)

Out[2]: '"number: 00025 ok'

In [4]: '"nl: {numl} n2: {num2}'.format (num2=25, numl=100)
Out[4]: '"ml: 100 n2: 25

In [5]: '"nl: {numl} n2: {num2} again: {numl}'.format (num2=25,
numl=100)

Out[5]: 'nl: 100 n2: 25 again: 100'

In [6]: 'number: {:05d} ok'.format (25)

Out[6]: "number: 00025 ok'

In [7]: values = {'name': 'dave', 'hobby': 'birding'}

In [8]: 'user: {name} activity: {hobby}'.format (**values)
Out[8]: 'user: dave activity: birding'

1.4.3.2 Unicode strings

Representing unicode:

In [96]: a = u'abcd'

In [97]: a

Out[97]: u'abcd'

In [98]: b = unicode('efgh')
In [99]: b

Out [99] u'efgh'

Convert to unicode: a_string.decode (encoding) . Examples:

In [102] 'abcd'.decode ('utf-8")

Out[102]: u'abcd'

In [103]

In [104] 'abcd'.decode (sys.getdefaultencoding())
Out[104]: u'abcd'

In [107]: a = u'abcd'

In [108] a.encode ('utf-8")

Out [108]: 'abcd'

In [109]: a.encode(sys.getdefaultencoding())
Out[109]: 'abcd'

In [110]: b = u'Sel\xeT7uk'

In [111]: print b.encode('utf-8")

Selcguk

Test for unicode type -- Example:

In [122]: import types

In [123]: a = u'abcd'

In [124]: type(a) 1s types.UnicodeType
Out[124]: True

In [125]

Page 27

www.EngineeringBooksPdf.com

A Python Book

In [126]: type(a) 1s type(u'')
Out[126]: True

Or better:

In [127]: isinstance (a, unicode)
Out [127]: True

An example with a character "c" with a hachek:

In [135]: name = 'Ivan Krsti\xc4\x87'
In [136]: name.decode ('utf-8")
Out[136]: u'Ivan Krsti\u0107"

In [137]

In [138]: len (name)

Out [138]: 12

In [139]: len(name.decode ('utf-8"))
Out [139] 11

In [2] a = 'aa' + unichr(170) + 'bb'
In [3] a

Out[3]: u'aa\xaabb'

In [6]: b = a.encode('utf-8")

In [7]: b

Out[7]: 'aa\xc2\xaabb'

In [8]: print b

aa®bb

Guidance for use of encodings and unicode -- If you are working with a multibyte
character set:

1. Convert/decode from an external encoding to unicode early
(my_string.decode (encoding)).
2. Do your work in unicode.
3. Convert/encode to an external encoding late
(my_string.encode (encoding)).
For more information, see:

e Unicode In Python, Completely Demystified -- http://farmdev.com/talks/unicode/
e PEP 100: Python Unicode Integration --
http://www.python.org/dev/peps/pep-0100/
e In the Python standard library:
o codecs -- Codec registry and base classes --
http://docs.python.org/2/library/codecs.html#module-codecs
o Standard Encodings --
http://docs.python.org/2/library/codecs.html#standard-encodings
If you are reading and writing multibyte character data from or to a file, then look at the

Page 28

www.EngineeringBooksPdf.com

A Python Book

codecs.open () in the codecs module --
http://docs.python.org/2/library/codecs.html#codecs.open.

Handling multi-byte character sets in Python 3 is easier, I think, but different. One hint is
to use the encoding keyword parameter to the open built-in function. Here is an
example:

def test () :
infile = open('infilel.txt', 'r', encoding='utf-8'")
outfile = open('outfilel.txt', 'w', encoding='utf-8")
for line in infile:
line = line.upper/()
outfile.write (line)
infile.close()
outfile.close()

test ()

1.4.4 Dictionaries

A dictionary is a collection, whose values are accessible by key. It is a collection of
name-value pairs.

The order of elements in a dictionary is undefined. But, we can iterate over (1) the keys,
(2) the values, and (3) the items (key-value pairs) in a dictionary. We can set the value of
a key and we can get the value associated with a key.

Keys must be immutable objects: ints, strings, tuples, ...

Literals for constructing dictionaries:

dl = {}
d2 = {keyl: valuel, key2: value2, }

Constructor for dictionaries -- dict () can be used to create instances of the class dict.
Some examples:

dict ({'one': 2, 'two': 3})

dict ({'one': 2, 'two': 3}.items{())

dict ({'one': 2, 'two': 3}.iteritems{())

dict (zip(('one', 'two'), (2, 3)))

dict ([['"two', 3], ['one', 2]11)

dict (one=2, two=3)

dict ([(['one', 'two'][i-2], 1) for i in (2, 3)])

For operations on dictionaries, see http://docs.python.org/lib/typesmapping.html or use:

>>> help({})

Or:

Page 29

www.EngineeringBooksPdf.com

A Python Book

[>>> dir ({}) |

Indexing -- Access or add items to a dictionary with the indexing operator []. Example:

In [102]: dictl = {}

In [103]: dictl['name'] = 'dave'

In [104]: dictl['category'] = 38

In [105]: dictl

Out [105] {'category': 38, 'name': 'dave'}

Some of the operations produce the keys, the values, and the items (pairs) in a dictionary.
Examples:

In [43]: d = {'aa': 111, 'bb': 222}
In [44]: d.keys()

Out[44]: ['aa', 'bb']

In [45]: d.values|()

Out [45]: [111, 222]

In [46]: d.items ()

Out [46] [('aa', 111), ('bb', 222)]

When iterating over large dictionaries, use methods iterkeys (), itervalues (),
and iteritems (). Example:

In [47]:

In [47]: d = {'aa': 111, 'bb': 222}

In [48]: for key in d.iterkeys():
5000 & print key

aa
bb

To test for the existence of a key in a dictionary, use the in operator or the
mydict.has_key (k) method. The in operator is preferred. Example:

>>> d = {'tomato': 101, 'cucumber': 102}
>>> k = 'tomato'

>>> k in d

True

>>> d.has_key (k)

True

You can often avoid the need for a test by using method get. Example:

>>> d = {'tomato': 101, 'cucumber': 102}
>>> d.get ('tomato', -1)
101
>>> d.get ('chard', -1)
=1
>>> if d.get ('eggplant') is None:
print 'missing'

Page 30

www.EngineeringBooksPdf.com

A Python Book

missing

Dictionary "view" objects provide dynamic (automatically updated) views of the keys or
the values or the items in a dictionary. View objects also support set operations. Create
views with mydict .viewkeys (), mydict.viewvalues (), and
mydict.viewitems (). See:
http://docs.python.org/2/library/stdtypes.html#dictionary-view-objects.

The dictionary setdefault method provides a way to get the value associated with a
key from a dictionary and to set that value if the key is missing. Example:

In [106] a

Out[106] {}

In [108] a.setdefault('cc', 33)
Out[108]: 33

In [109]: a

Out[109]: {'cc': 33}

In [110] a.setdefault ('cc', 44)
Out[110]: 33

In [111] a

Out[111] {'cc': 33}

Exercises:

e Write a literal that defines a dictionary using both string literals and variables
containing strings. Solution:

>>> first = 'Dave'

>>> last = 'Kuhlman'

>>> name_dict = {first: last, 'Elvis': 'Presley'}
>>> print name_dict

{'Dave': 'Kuhlman', 'Elvis': 'Presley'}

e Write statements that iterate over (1) the keys, (2) the values, and (3) the items in
a dictionary. (Note: Requires introduction of the for statement.) Solutions:

>>> d = {'aa': 111, 'bb': 222, 'cc': 333}

>>> for key in d.keys():
print key

aa

cc

bb

>>> for value in d.values|():
print value

111

333

222

>>> for item in d.items() :
print item

Page 31

www.EngineeringBooksPdf.com

A Python Book

('aa', 111)

('cc 333)

('bb', 222)

>>> for key, value in d.items() :
c print key, '::', value

aa :: 111

ee g8 333

bb :: 222

Additional notes on dictionaries:

e Youcanuse iterkeys (), itervalues (), iteritems () to obtain
iterators over keys, values, and items.

e A dictionary itself is iterable: it iterates over its keys. So, the following two lines
are equivalent:

for k in myDict: print k
for k in myDict.iterkeys(): print k

e The in operator tests for a key in a dictionary. Example:

In [52]: mydict = {'peach': 'sweet', 'lemon': 'tangy'}
In [53]: key = 'peach'
In [54]: if key in mydict:

NP print mydict [key]

1.4.5 Files

Open a file with the open factory method. Example:

In [28]: £ = open('mylog.txt', 'w')
In [29]: f.write('message #1\n')

In [30]: f.write('message #2\n')

In [31]: f.write('message #3\n')

In [32]: f.close()

In [33] f = file('mylog.txt', 'r'")
In [34] for line in f:

50008 print line,
message #1
message #2
message #3
In [35]: f.close()

Notes:
e Use the (built-in) open (path, mode) function to open a file and create a file

object. You could alsouse file (), but open () is recommended.

Page 32

www.EngineeringBooksPdf.com

A Python Book

A file object that is open for reading a text file supports the iterator protocol and,
therefore, can be used in a for statement. It iterates over the /ines in the file. This
is most likely only useful for text files.

open is a factory method that creates file objects. Use it to open files for reading,
writing, and appending. Examples:

infile = open('myfile.txt', 'r') # open for reading
outfile = open('myfile.txt', 'w') # open for (over-)
writing

log = open('myfile.txt', 'a') # open for

appending to existing content

When you have finished with a file, close it. Examples:

infile.close ()
outfile.close()

You can also use the with: statement to automatically close the file. Example:

with open('tmpOl.txt', 'r') as infile:
for x in infile:
print x,

The above works because a file is a context manager: it obeys the context
manager protocol. A file has methods __enter___and __exit__, and the
__exit__ method automatically closes the file for us. See the section on the
with: statement.

In order to open multiple files, you can nest with: statements, or use a single
with: statement with multiple "expression as target" clauses. Example:

def test () :
#
use multiple nested with: statements.
with open('small_file.txt', 'r') as infile:

with open('tmp_outfile.txt', 'w') as outfile:
for line in infile:
outfile.write('line: %s' %
line.upper())
print infile
print outfile

#
use a single with: statement.
with open('small_ file.txt', 'r') as infile, \

'w') as outfile:

open ('tmp_outfile.txt',
for line in infile:
outfile.write('line: %s' % line.upper())
print infile
print outfile

test ()

file is the file type and can be used as a constructor to create file objects. But,

Page 33

www.EngineeringBooksPdf.com

A Python Book

open is preferred.

e Lines read from a text file have a newline. Strip it off with something like:
line.rstrip('\n').

e For binary files you should add the binary mode, for example: rb, wb. For more
about modes, see the description of the open () function at Built-in Functions --
http://docs.python.org/lib/built-in-funcs.html.

e Learn more about file objects and the methods they provide at: 2.3.9 File Objects
-- http://docs.python.org/2/library/stdtypes.html#file-objects.

You can also append to an existing file. Note the "a" mode in the following example:

In [39]
In [40]:
In [41]:
In [42]:
In [43]
message
message
message
message
In [44]:

f = open('mylog.txt', 'a')
f.write ('message #4\n')
f.close()
f = file('mylog.txt', 'r')
for line in f:

print line,

#4
f.close ()

For binary files, add "b" to the mode. Not strictly necessary on UNIX, but needed on MS
Windows. And, you will want to make your code portable across platforms. Example:

In [62]: import zipfile

In [63]: outfile = open('tmpl.zip', 'wb')

In [64]: zfile = zipfile.ZipFile(outfile, 'w', zipfile.ZIP_DEFLATED)

In [65]: zfile.writestr('entryl', 'my heroes have always been

cowboys"')

In [66]: zfile.writestr('entry2', 'and they still are it seems')

In [67]: zfile.writestr('entry3', 'sadly in search of and')

In [68]: zfile.writestr('entry4', 'on step in back of')

In [69]:

In [70]: zfile.writestr('entry4', 'one step in back of')

In [71]: zfile.writestr ('entry5', 'themselves and their slow moving

ways')

In [72]: zfile.close()

In [73]: outfile.close ()

In [75]:

S

S unzip -1lv tmpl.zip

Archive: tmpl.zip

Length Method Size Ratio Date Time CRC-32 Name
34 Defl:N 36 -6% 05-29-08 17:04 f6b7d921 entryl
27 Defl:N 29 -=7% 05-29-08 17:07 10da8f3d entry2
22 Defl:N 24 -9% 05-29-08 17:07 3fdl7fda entry3
18 Defl:N 20 -11% 05-29-08 17:08 d55182e6 entry4

Page 34

www.EngineeringBooksPdf.com

A Python Book

19 Defl:N 21 -11% 05-29-08 17:08 1la892acd entry4
37 Defl:N 39 -5% 05-29-08 17:09 e213708c entryb
157 169 -8% 6 files

Exercises:

o Read all of the lines of a file into a list. Print the 3rd and 5th lines in the file/list.

Solution:

In [55] f = open('tmpl.txt', 'r')
In [56]: lines = f.readlines/()
In [57]: f.close ()
In [58]: lines
Out [58]: ['the\n', 'big\n', 'brown\n', 'dog\n',
'had\n', 'long\n', 'hair\n']
In [59]: print lines[2]
brown
In [61]: print lines[4]
had

More notes:

e Strip newlines (and other whitespace) from a string with methods strip (),
lstrip(),and rstrip ().

e Get the current position within a file by usingmyfile.tell ().

e Set the current position within a file by using myfile.seek (). It may be
helpful to use os . SEEK_CUR and os . SEEK_END. For example:
o f.seek (2, os.SEEK_CUR) advances the position by two
o f.seek (-3, os.SEEK_END) sets the position to the third to last.
o f.seek (25) sets the position relative to the beginning of the file.

1.4.6 Other built-in types

Other built-in data types are described in section Built-in Types --
http://docs.python.org/lib/types.html in the Python standard documentation.

1.4.6.1 The None value/type

n " nn

The unique value None is used to indicate "no value", "nothing", "non-existence", etc.
There is only one None value; in other words, it's a singleton.

Use 1is to test for None. Example:

>>> flag = None

>>>

>>> if flag is None:
print 'clear'

Page 35

www.EngineeringBooksPdf.com

A Python Book

clear
>>> if flag is not None:
print 'hello'

>>>

1.4.6.2 Boolean values
True and False are the boolean values.

The following values also count as false, for example, in an 1 f : statement: False,
numeric zero, None, the empty string, an empty list, an empty dictionary, any empty
container, etc. All other values, including True, act as true values.

1.4.6.3 Sets and frozensets
A set is an unordered collection of immutable objects. A set does not contain duplicates.
Sets support several set operations, for example: union, intersection, difference, ...

A frozenset is like a set, except that a frozenset is immutable. Therefore, a frozenset is
hash-able and can be used as a key in a dictionary, and it can be added to a set.

Create a set with the set constructor. Examples:

>>> a = set ()

>>> a

set ([])

>>> a.add('aa')

>>> a.add('bb'")

>>> a

set(['aa', 'bb']l)

>>> b = set ([11, 22])
>>> b

set ([11, 221)

>>> ¢ = set ([22, 33])
>>> b.union (c)

set ([33, 11, 221)

>>> b.intersection (c)
set ([22])

For more information on sets, see: Set Types -- set, frozenset --
http://docs.python.org/lib/types-set.html

1.5 Functions and Classes -- A Preview

Structured code -- Python programs are made up of expressions, statements, functions,
classes, modules, and packages.

Page 36

www.EngineeringBooksPdf.com

A Python Book

Python objects are first-class objects.
Expressions are evaluated.

Statements are executed.

Functions (1) are objects and (2) are callable.

Object-oriented programming in Python. Modeling "real world" objects. (1)
Encapsulation; (2) data hiding; (3) inheritance. Polymorphism.

Classes -- (1) encapsulation; (2) data hiding; (3) inheritance.

An overview of the structure of a typical class: (1) methods; (2) the constructor; (3) class
(static) variables; (4) super/subclasses.

1.6 Statements

1.6.1 Assignment statement
Form -- target = expression.
Possible targets:

e Identifier
e Tuple or list -- Can be nested. Left and right sides must have equivalent structure.

Example:
>>> x, y, z = 11, 22, 33
>>> [x, y, z] = 111, 222, 333
>>> a, (b, c) =11, (22, 33)
>>> a, B =11, (22, 33)

This feature can be used to simulate an enum:

In [22]: LITTLE, MEDIUM, LARGE = range(l, 4)
In [23]: LITTLE
out[23]: 1
In [24]: MEDIUM
out [24]: 2
e Subscription of a sequence, dictionary, etc. Example:
In [10]: a = range (10)
In [11]: a
Out[11]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
In [12]: a[3] = 'abc'
In [13]: a
Out[13]: [0, 1, 2, 'abc', 4, 5, 6, 7, 8, 9]
In [14]:
In [14]: b = {'aa': 11, 'bb': 22}
In [15]: Db
Page 37

www.EngineeringBooksPdf.com

A Python Book

Out [15]: {'aa': 11, 'bb': 22}

In [16]: b['bb'] = 1000

In [17]: b['cc'] = 2000

In [18]: b

Out[18] {'aa': 11, 'bb': 1000, 'cc': 2000}

e A slice of a sequence -- Note that the sequence must be mutable. Example:

In [1] a = range (10)

In [2]: a

out [2] (o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

In [3]: al[2:5] = [11, 22, 33, 44, 55, 66]

In [4]: a

Out [4] (o, 1, 11, 22, 33, 44, 55, 66, 5, 6, 7, 8, 9]

e Attribute reference -- Example:

>>> class MyClass:
pass

>>> anObj = MyClass ()

>>> anObj.desc = 'pretty'
>>> print anObj.desc
pretty

There is also augmented assignment. Examples:

Il
o

>>> index
>>> index
>>> index
>>> index
>>> index
>>> index

+ +
Il

+
Il

W =+ O
bl

*
Il

Things to note:

e Assignment to a name creates a new variable (if it does not exist in the
namespace) and a binding. Specifically, it binds a value to the new name. Calling
a function also does this to the (formal) parameters within the local namespace.

e In Python, a language with dynamic typing, the data type is associated with the
value, not the variable, as is the case in statically typed languages.

e Assignment can also cause sharing of an object. Example:

objl = A()
obj2 = objl

Check to determine that the same object is shared with id (obj) orthe is
operator. Example:

In [23]: a = range (10)

In [24]: a

Out [24] o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
In [25]: b = a

In [26]: b

Page 38

www.EngineeringBooksPdf.com

A Python Book

In [31]:

31037920

[OI lr 2/ 3/ 4/ 5/ 6/ 7/ 8/ 9]
b[3] = 333

: b
o, i1, 2, 333, 4, 5, 6, 71, 8, 9]
a
(o, 1, 2, 333, 4, 5, 6, 7, 8, 9]
a is b
True
print id(a), id(b)
31037920

e You can also do multiple assignment in a single statement. Example:

123

a =>b =
a is b
True

e You can interchange (swap) the value of two variables using assignment and

packing/unpacking:

>>>
>>> a
222
>>> Db
111

>>> a =
>>> b =

b =

111
222
b, a

1.6.2 import statement

Make module (or objects in the module) available.

What import does:

Evaluate the content of a module.

Likely to create variables in the local (module) namespace.

Evaluation of a specific module only happens once during a given run of the
program. Therefore, a module is shared across an application.

A module is evaluated from top to bottom. Later statements can replace values
created earlier. This is true of functions and classes, as well as (other) variables.
Which statements are evaluated? Assignment, class, def, ...

Use the following idiom to make a module both run-able and import-able:

\if

name ==

main S

Page 39

www.EngineeringBooksPdf.com

A Python Book

import pdb; pdb.set_trace()

defined in module

main () # or "test ()" or some other function

Notes:

O

o

The above condition will be true only when the module is run as a script and
will not be true when the module is imported.

The line containing pdb can be copied any place in your program and
un-commented, and then the program will drop into the Python debugger
when that location is reached.

Where import looks for modules:

sys.path shows where it looks.

There are some standard places.

Add additional directories by setting the environment variable PYTHONPATH.
You can also add paths by modifying sys . path, for example:

import sys
sys.path.insert (0, '/path/to/my/module’)

Packages need a file named __init__ .py.

Extensions -- To determine what extensions import looks for, do:

>>> import imp
>>> imp.get_suffixes ()

1, (".pyc', 'rb', 2)]

[('.s0o', 'rb', 3), ('module.so', 'rb', 3), ('.py', 'U',

Forms of the import statement:

import A -- Names in the local (module) namespace are accessible with the dot

operator.
import A as B -- Import the module A, but bind the module object to the

variable B.

import Al, A2 -- Notrecommended

from
from
from
from

import B
import B1l, B2
import B as C

A
A
A
A import * -- Notrecommended: clutters and mixes name-spaces.

from A.B import C -- (1) Possibly import object C from module B in

package A or (2) possibly import module C from sub-package B in package A.

import A.B.C -- To reference attributes in C, must use fully-qualified name,

for example use A.B.C.D to reference D inside of C.

More notes on the import statement:

e The import statement and packages -- A file named __init__ .py is required in
a package. This file is evaluated the first time either the package is imported or a

Page 40

www.EngineeringBooksPdf.com

A Python Book

file in the package is imported. Question: What is made available when you do
import aPackage? Answer: All variables (names) that are global inside the

__init__ .py module in that package. But, see notes on the use of __all
The import statement -- http://docs.python.org/ref/import.html
e Theuseofif = name == "_ main__ ": -- Makes a module both

import-able and executable.

e Using dots in the import statement -- From the Python language reference manual:
"Hierarchical module names:when the module names contains
one or more dots, the module search path is carried out
differently. The sequence of identifiers up to the last dot is used
to find a package; the final identifier is then searched inside
the package. A package is generally a subdirectory of a
directory on sys.path that has a file __init__.py."

See: The import statement -- http://docs.python.org/ref/import.html
Exercises:

e Import a module from the standard library, for example re.

e Import an element from a module from the standard library, for example import
compile from the re module.

e Create a simple Python package with a single module in it. Solution:

Create a directory named simplepackage in the current directory.

Create an (empty) __init__ .py in the new directory.

Create an simple.py in the new directory.

Add a simple function name testl in simple.py.

Import using any of the following:

ANl e

>>> import simplepackage.simple

>>> from simplepackage import simple

>>> from simplepackage.simple import testl

>>> from simplepackage.simple import testl as mytest

1.6.3 print statement

print sends output to sys.stdout. It adds a newline, unless an extra comma is
added.

Arguments to print:

Multiple items -- Separated by commas.

End with comma to suppress carriage return.

Use string formatting for more control over output.

Also see various "pretty-printing" functions and methods, in particular, pprint.
See 3.27 pprint -- Data pretty printer --

Page 41

www.EngineeringBooksPdf.com

A Python Book

http://docs.python.org/lib/module-pprint.html.
String formatting -- Arguments are a tuple. Reference: 2.3.6.2 String Formatting
Operations -- http://docs.python.org/lib/typesseq-strings.html.

Can also use sys.stdout. Note that a carriage return is not automatically added.
Example:

>>> import sys
>>> gys.stdout.write('hello\n"')

Controlling the destination and format of print -- Replace sys . stdout with an instance
of any class that implements the method write taking one parameter. Example:

import sys

class Writer:

def _ _init_ (self, file_name) :
self.out_file = file(file_name, 'a')

def write(self, msqg):
self.out_file.write('[[%s]]' % msqQ)

def close(self):
self.out_file.close()

def test():
writer = Writer ('outputfile.txt')
save_stdout = sys.stdout
sys.stdout = writer

print 'hello'

print 'goodbye'

writer.close ()

Show the output.

tmp_file = file('outputfile.txt')
sys.stdout = save_stdout

content = tmp_file.read()
tmp_file.close()

print content

test ()

There is an alternative form of the print statement that takes a file-like object, in
particular an object that has a write method. For example:

In [1]: outfile = open('tmp.log', 'w')
In [2]: print >> outfile, 'Message #1'
In [3]: print >> outfile, 'Message #2'
In [4]: print >> outfile, 'Message #3'
In [5]: outfile.close()
In [6]:
In [6]: infile = open('tmp.log', 'r'")
In [7]: for line in infile:
- print 'Line:', line.rstrip('\n'")

Page 42

www.EngineeringBooksPdf.com

A Python Book

Line: Message #1
Line: Message #2
Line: Message #3
In [8]: infile.close()

Future deprecation warning -- There is no print statement in Python 3. There is a print
built-in function.

1.6.4 if: elif: else: statement

A template for the i f: statement:

if conditionl:
statements
elif condition2:
statements
elif condition3:
statements
else:
statements

The elif and else clauses are optional.

Conditions -- Expressions -- Anything that returns a value. Compare with eval () and
exec.

Truth values:

e False -- False, None, numeric zero, the empty string, an empty collection (list
or tuple or dictionary or ...).
e True -- True and everything else.
Operators:

e and and or -- Note that both and and or do short circuit evaluation.

e not

e isand is not -- The identical object. Cf. a is band id(a) == id(b).
Useful to test for None, for example:

if x is None:

if x is not None:

e inandnot in --Can be used to test for existence of a key in a dictionary or for
the presence of a value in a collection.
The in operator tests for equality, not identity.
Example:

>>> d = {'aa': 111, 'bb': 222}
>>> 'aa' in d

Page 43

www.EngineeringBooksPdf.com

A Python Book

True
>>> 'ga' not in d
False
>>> 'xx' in d
False
e Comparison operators, for example ==, ! =, <, <=, ...

There is an i f expression. Example:

>>> a = 'aa'
>>> b = 'bb'
>>> x = 'yes' if a == b else 'no'
>>> x
] no]
Notes:

e The elif: clauses and the else: clause are optional.

e Theif:,elif:,andelse: clauses are all header lines in the sense that they
are each followed by an indented block of code and each of these header lines
ends with a colon. (To put an empty block after one of these, or any other,
statement header line, use the pass statement. It's effectively a no-op.)

e Parentheses around the conditionin an 1 f: or elif: are not required and are
considered bad form, unless the condition extends over multiple lines, in which
case parentheses are preferred over use of a line continuation character (backslash
at the end of the line).

Exercises:

e Write an 1 f statement with an and operator.
e Write an 1 f statement with an or operator.
e Write an 1 f statement containing both and and or operators.

1.6.5 for: statement

Iterate over a sequence or an "iterable" object.

Form:

for x in y:
block

Iterator -- Some notes on what it means to be iterable:

e An iterable is something that can be used in an iterator context, for example, in a
for: statement, in a list comprehension, and in a generator expression.

e Sequences and containers are iterable. Examples: tuples, lists, strings,
dictionaries.

e Instances of classes that obey the iterator protocol are iterable. See

Page 44

www.EngineeringBooksPdf.com

A Python Book

http://docs.python.org/lib/typeiter.html.

e We can create an iterator object with built-in functions such as iter () and
enumerate (). See Built-in Functions --
http://docs.python.org/lib/built-in-funcs.html in the Python standard library
reference.

e Functions that use the yield statement, produce an iterator, although it's actually
called a generator.

e An iterable implements the iterator interface and satisfies the iterator protocol.
The iterator protocol: __iter__ () and next () methods. See 2.3.5 Iterator
Types -- (http://docs.python.org/lib/typeiter.html).

Testing for "iterability":

e If you can use an object in a for : statement, it's iterable.
e If the expresion iter (obj) does not produce a TypeError exception, it's
iterable.
Some ways to produce iterators:

e iter () and enumerate () -- See:
http://docs.python.org/lib/built-in-funcs.html.

e some_dict.iterkeys (), some_dict.itervalues(),
some_dict.iteritems ().

e Use a sequence in an iterator context, for example in a for statement. Lists,
tuples, dictionaries, and strings can be used in an iterator context to produce an
iterator.

e Generator expressions -- Latest Python only. Syntactically like list
comprehensions, but (1) surrounded by parentheses instead of square brackets and
(2) use lazy evaluation.

e A class that implements the iterator protocol -- Example:

class A(object):
def _ _init__ (self):
self.data = [11,22,33]
self.idx = 0
def _ _iter_ (self):
return self
def next (self):
if self.idx < len(self.data):
x = self.data[self.idx]
self.idx +=1
return x
else:
raise StopIteration

def test () :
a = A()
for x in a:

Page 45

www.EngineeringBooksPdf.com

A Python Book

print x

test ()

Note that the iterator protocol changes in Python 3.
e A function containing a yield statement. See:
o Yield expressions --
http://docs.python.org/2/reference/expressions.html#yield-expressions
o The yield statement --
http://docs.python.org/2/reference/simple_stmts.html#the-yield-statement
e Alsosee itertools module in the Python standard library for much more help
with iterators: itertools — Functions creating iterators for efficient looping --
http://docs.python.org/2/library/itertools.html#module-itertools
The for: statement can also do unpacking. Example:

In [25]: items = ['apple', 'banana', 'cherry',6 'date']
In [26]: for idx, item in enumerate (items) :
60008 print '%d. $s' % (idx, item,)
0. apple
1. banana
2. cherry
3. date

The for statement can also have an optional else: clause. The else: clause is
executed if the for statement completes normally, that is if a break statement is not
executed.

Helpful functions with for:

e cnumerate (iterable) -- Returns an iterable that produces pairs (tuples)
containing count (index) and value. Example:

>>> for idx, value in enumerate([11l,22,33]):
print idx, value

0 11

1 22

2 33

e range ([start,] stopl[, step]) and xrange ([start,] stopl[,
stepl).
List comprehensions -- Since list comprehensions create lists, they are useful in for
statements, although, when the number of elements is large, you should consider using a
generator expression instead. A list comprehension looks a bit like a for : statement, but
is inside square brackets, and it is an expression, not a statement. Two forms (among
others):

e [f(x) for x in iterable]

Page 46

www.EngineeringBooksPdf.com

A Python Book

e [f(x) for x in iterable if t (x)]
Generator expressions -- A generator expression looks similar to a list comprehension,
except that it is surrounded by parentheses rather than square brackets. Example:

In [28]: items = ['apple', 'banana', 'cherry', 'date']
In [29]: genl = (item.upper () for item in items)
In [30]: for x in genl:
e print 'x:', x
x: APPLE
x: BANANA
x: CHERRY
x: DATE
Exercises:

e Write a list comprehension that returns all the keys in a dictionary whose
associated values are greater than zero.

o The dictionary: {'aa': 11, 'cc': 33, 'dd': -55, 'bb': 22}
o Solution: [x[0] for x in my_dict.iteritems () if x[1] >
0]

e Write a list comprehension that produces even integers from O to 10. Use a for
statement to iterate over those values. Solution:

for x in [y for y in range(1l0) if y % 2 == 0]:

Q

print 'x: %s' % x

e Write a list comprehension that iterates over two lists and produces all the
combinations of items from the lists. Solution:

In [19] a = range (4)

In [20]: b [11,22,33]

In [21]: a

Out[21]: [0, 1, 2, 3]

In [22]: b

out[22] [11, 22, 33]

In [23] c = [(x, y) for x in a for y in Db]

In [24]: print c

(05 TE0) (0,220, = (0], =33 (1, HE, = (35,2120, = (GE, 381,
(2, 11), (2, 22), (2, 33), (3, 11), (3, 22), (3, 33)]

But, note that in the previous exercise, a generator expression would often be better. A
generator expression is like a list comprehension, except that, instead of creating the
entire list, it produces a generator that can be used to produce each of the elements.

The break and cont inue statements are often useful in a for statement. See continue
and break statements

The for statement can also have an optional else: clause. The else: clause is
executed if the for statement completes normally, that is if a break statement is not
executed. Example:

Page 47

www.EngineeringBooksPdf.com

A Python Book

for item in datal:
if item > 100:

valuel = item
break
else:
valuel = 'not found'

print 'valuel:', wvaluel

When run, it prints:

‘valuel: not found

1.6.6 while: statement

Form:

while condition:
block

The while: statement is not often used in Python because the for : statement is
usually more convenient, more idiomatic, and more Pythonic.

Exercises:

e Write a while statement that prints integers from zero to 5. Solution:

count = 0

while count < 5:
count += 1
print count

The break and cont inue statements are often useful in a while statement. See
continue and break statements

The while statement can also have an optional el se: clause. The else: clause is
executed if the while statement completes normally, that is if a break statement is not
executed.

1.6.7 continue and break statements
The break statement exits from a loop.

The continue statement causes execution to immediately continue at the start of the
loop.

Can beused in for: and while:.

When the for: statement or the while: statement has an else: clause, the block in
the else: clause is executed only if a break statement is not executed.

Exercises:

Page 48

www.EngineeringBooksPdf.com

A Python Book

e Using break, write a while statement that prints integers from zero to 5.
Solution:

count = 0
while True:
count += 1
if count > 5:
break
print count

Notes:
o A for statement that uses range () or xrange () would be better than a
while statement for this use.
e Using continue, write a while statement that processes only even integers
from O to 10. Note: % is the modulo operator. Solution:

count = 0
while count < 10:
count += 1
if count % 2 == 0:
continue
print count

1.6.8 try: except: statement

Exceptions are a systematic and consistent way of processing errors and "unusual" events
in Python.

Caught and un-caught exceptions -- Uncaught exceptions terminate a program.
The try: statement catches an exception.
Almost all errors in Python are exceptions.

Evaluation (execution model) of the t ry statement -- When an exception occurs in the
try block, even if inside a nested function call, execution of the t ry block ends and the
except clauses are searched for a matching exception.

Tracebacks -- Also see the t raceback module:
http://docs.python.org/lib/module-traceback.html

Exceptions are classes.
Exception classes -- subclassing, args.

An exception class in an except : clause catches instances of that exception class and
all subclasses, but not superclasses.

Built-in exception classes -- See:

e Module exceptions.

Page 49

www.EngineeringBooksPdf.com

A Python Book

e Built-in exceptions -- http://docs.python.org/lib/module-exceptions.html.
User defined exception classes -- subclasses of Exception.

Example:

try:
raise RuntimeError ('this silly error')
except RuntimeError, exp:

[o) [o)

print "[[[%$s]]]" % exp

Reference: http://docs.python.org/lib/module-exceptions.html

You can also get the arguments passed to the constructor of an exception object. In the
above example, these would be:

‘exp.args ‘

Why would you define your own exception class? One answer: You want a user of your
code to catch your exception and no others.

Catching an exception by exception class catches exceptions of that class and all its
subclasses. So:

‘except SomeExceptionClass, exp:

matches and catches an exception if SomeExceptionClass is the exception class or a base
class (superclass) of the exception class. The exception object (usually an instance of
some exception class) is bound to exp.

A more "modern" syntax is:

‘except SomeExceptionClass as exp:

So:

class MyE (ValueError) :
pass

try:
raise MyE ()
except ValueError:
print 'caught exception'’

will print "caught exception", because ValueError is a base class of MyE.

Also see the entries for "EAFP" and "LBYL" in the Python glossary:
http://docs.python.org/3/glossary.html.

Exercises:

e Write a very simple, empty exception subclass. Solution:

‘ class MyE (Exception) :

Page 50

www.EngineeringBooksPdf.com

A Python Book

‘ pass

e Write a try:except : statement that raises your exception and also catches it.
Solution:

try:

raise MyE ('hello there dave')
except MyE, e:

print e

1.6.9 raise statement
Throw or raise an exception.

Forms:

e raise instance
e raise MyExceptionClass (value) -- preferred.
e raise MyExceptionClass, wvalue

The raise statement takes:

An (instance of) a built-in exception class.

An instance of class Exception or

An instance of a built-in subclass of class Exception or

An instance of a user-defined subclass of class Exception or

One of the above classes and (optionally) a value (for example, a string or a
tuple).

See http://docs.python.org/ref/raise.html.

For a list of built-in exceptions, see http://docs.python.org/lib/module-exceptions.html.

The following example defines an exception subclass and throws an instance of that
subclass. It also shows how to pass and catch multiple arguments to the exception:

class NotsobadError (Exception) :
pass

def test (x):

try:
if x ==
raise NotsobadError ('a moderately bad error', 'not too
bad"')
except NotsobadError, e:
print 'Error args: %$s' % (e.args,)
test (0)

Which prints out the following:

‘Error args: ('a moderately bad error', 'not too bad')

Page 51

www.EngineeringBooksPdf.com

A Python Book

Notes:

e In order to pass in multiple arguments with the exception, we use a tuple, or we
pass multiple arguments to the constructor.
The following example does a small amount of processing of the arguments:

class NotsobadError (Exception) :
"""An exception class.

mwn

def get_args(self):
return '::::'.join(self.args)

def test (x):

try:
if x ==
raise NotsobadError ('a moderately bad error', 'not too
bad"')
except NotsobadError, e:
print 'Error args: {{{%s}}}' % (e.get_args(),)
test (0)

1.6.10 with: statement

The with statement enables us to use a context manager (any object that satisfies the
context manager protocol) to add code before (on entry to) and after (on exit from) a
block of code.

1.6.10.1 Writing a context manager

A context manager is an instance of a class that satisfies this interface:

class Context01l (object) :
def _ _enter_ (self):
pass
def __exit_ (self, exc_type, exc_value, traceback):
pass

Here is an example that uses the above context manager:

class Context01 (object) :
def _ _enter_ (self):
print 'in _ _enter_ '
return 'some value or other' # usually we want to return
self
def __exit_ (self, exc_type, exc_value, traceback):
print 'in __exit_ '
Notes:

Page 52

www.EngineeringBooksPdf.com

A Python Book

e The ___enter__ method is called before our block of code is entered.
e Usually, but not always, we will want the __enter___ method to return self,
that is, the instance of our context manager class. We do this so that we can write:

with MyContextManager () as obj:
pass

and then use the instance (ob j in this case) in the nested block.

e The exit__ method is called when our block of code is exited either
normally or because of an exception.

e If an exception is supplied, and the method wishes to suppress the exception (i.e.,
prevent it from being propagated), it should return a true value. Otherwise, the
exception will be processed normally upon exit from this method.

e If the block exits normally, the value of exc_type, exc_value, and
traceback will be None.

For more information on the with : statement, see Context Manager Types --
http://docs.python.org/2/library/stdtypes.html#context-manager-types.

See module context1ib for strange ways of writing context managers:
http://docs.python.org/2/library/contextlib.html#module-contextlib

1.6.10.2 Using the with: statement

Here are examples:

example 1
with Context01():
print 'in body'

example 2

with Context02 () as a_value:
print 'in body'
print 'a_value: "%s"' % (a_value,)

a_value.some_method_in_ Context02 ()

example 3
with open(infilename, 'r') as infile, open(outfilename, 'w') as
outfile:
for line in infile:
line = line.rstrip()

[o)

outfile.write ('$s\n' % line.upper())

Notes:

e Intheformwith ... as wval, the value returned by the _ _enter_
method is assigned to the variable (val in this case).

e In order to use more than one context manager, you can nest with: statements,
or separate uses of of the context managers with commas, which is usually

Page 53

www.EngineeringBooksPdf.com

A Python Book
preferred. See example 3 above.

1.6.11 del

The del statement can be used to:

e Remove names from namespace.

e Remove items from a collection.
If name is listed in a global statement, then del removes name from the global
namespace.

Names can be a (nested) list. Examples:

>>> del a
>>> del a, b, c

We can also delete items from a list or dictionary (and perhaps from other objects that we
can subscript). Examples:

In [9]:d = {'aa': 111, 'bb': 222, 'cc': 333}
In [10]:print d

{'aa': 111, 'cc': 333, 'bb': 222}

In [11]:del d['bb']

In [12]:print d

{'aa': 111, 'cc': 333}

In [13]:
In [13]:a = [111, 222, 333, 444]
In [14]:print a

[111, 222, 333, 444]
In [15]:del a[l]
In [16]:print a
[111, 333, 444]

And, we can delete an attribute from an instance. Example:

In [17]:class A:

5000 8 pass
In [18]:a = A()
In [19]:a.x = 123
In [20] :dir (a)
Out[20]:['"_doc__ "', '_ module_ ', 'x']
In [21]:print a.x
123
In [22]:del a.x
In [23]:dir(a)
Out[23]:['__doc__ ', '_ _module_ ']
In [24]:print a.x
exceptions.AttributeError Traceback (most recent call last)

Page 54

www.EngineeringBooksPdf.com

A Python Book

/home/dkuhlman/al/Python/Test/<console>

AttributeError: A instance has no attribute 'x

1.6.12 case statement

There is no case statement in Python. Use the i f : statement with a sequence of e1if:
clauses. Or, use a dictionary of functions.

1.7 Functions, Modules, Packages, and Debugging

1.7.1 Functions

1.7.1.1 The def statement
The de £ statement is used to define functions and methods.

The def statement is evaluated. It produces a function/method (object) and binds it to a
variable in the current name-space.

Although the de f statement is evaluated, the code in its nested block is not executed.
Therefore, many errors may not be detected until each and every path through that code is
tested. Recommendations: (1) Use a Python code checker, for example f1ake8 or
pylint; (2) Do thorough testing and use the Python unittest framework. Pythonic
wisdom: If it's not tested, it's broken.

1.7.1.2 Returning values
The return statement is used to return values from a function.

The return statement takes zero or more values, separated by commas. Using commas
actually returns a single tuple.

The default value is None.

To return multiple values, use a tuple or list. Don't forget that (assignment) unpacking
can be used to capture multiple values. Returning multiple items separated by commas is
equivalent to returning a tuple. Example:

In [8]: def test(x, Vy):
o0 c return x * 3, y * 4

In [9]: a, b = test (3, 4)
In [10]: print a

Page 55

www.EngineeringBooksPdf.com

A Python Book

In [11l]: print b
16

1.7.1.3 Parameters

Default values -- Example:

In [53]: def t (max=5):
cee for val in range (max) :
50008 print val

In [54]: t(3)

0

1

2

In [55]: t()

0

1

2

3

4

Giving a parameter a default value makes that parameter optional.

Note: If a function has a parameter with a default value, then all "normal" arguments
must proceed the parameters with default values. More completely, parameters must be
given from left to right in the following order:

1. Normal arguments.

2. Arguments with default values.

3. Argument list (*args).

4. Keyword arguments (* *kwargs).
List parameters -- *args. It's a tuple.

Keyword parameters -- **kwargs. It's a dictionary.

1.7.1.4 Arguments

When calling a function, values may be passed to a function with positional arguments or
keyword arguments.

Positional arguments must placed before (to the left of) keyword arguments.

Passing lists to a function as multiple arguments -- some_ func (*aList) . Effectively,
this syntax causes Python to unroll the arguments. Example:

def fnl (*args, **kwargs):
fn2 (*args, **kwargs)

Page 56

www.EngineeringBooksPdf.com

A Python Book

1.7.1.5 Local variables

Creating local variables -- Any binding operation creates a local variable. Examples are
(1) parameters of a function; (2) assignment to a variable in a function; (3) the import
statement; (4) etc. Contrast with accessing a variable.

Variable look-up -- The LGB/LEGB rule -- The local, enclosing, global, built-in scopes
are searched in that order. See: http://www.python.org/dev/peps/pep-0227/

The global statement -- Inside a function, we must use global when we want to set
the value of a global variable. Example:

def fn () :

global Some_global_variable, Another global variable
Some_global_variable = 'hello'

1.7.1.6 Other things to know about functions

Functions are first-class -- You can store them in a structure, pass them to a

)
function, and return them from a function.
e Function calls can take keyword arguments. Example:
>>> test (size=25)
e Formal parameters to a function can have default values. Example:
>>> def test (size=0):
Do not use mutable objects as default values.
e You can "capture" remaining arguments with *args, and **kwargs. (Spelling
is not significant.) Example:
In [13]: def test(size, *args, **kwargs):
NP print size
R print args
e print kwargs
In [14]: test (32, 'aa', 'bb', otherparam='xyz')
32
('aa' , 'bb')
{'otherparam': 'xyz'}
e Normal arguments must come before default arguments which must come before
keyword arguments.
e A function that does not explicitly return a value, returns None.
e In order to set the value of a global variable, declare the variable with global.
Exercises:

Page 57

www.EngineeringBooksPdf.com

A Python Book

e Write a function that takes a single argument, prints the value of the argument,
and returns the argument as a string. Solution:

>>> def t(x):
print 'x: %s'
return '[[%s]]' % x

e Write a function that takes a variable number of arguments and prints them all.
Solution:

>>> def t(*args):
for arg in args:
print 'arg: %s' % arg

>>> t('aa', 'bb', 'cc')

arg: aa
arg: bb
arg: cc

e Write a function that prints the names and values of keyword arguments passed to
it. Solution:

>>> def t (**kwargs) :

for key in kwargs.keys () :
e print 'key: %s value: %s' $ (key,
kwargs[key],)

>>> t (argl=11, arg2=22)
key: argl wvalue: 11
key: arg2 value: 22

1.7.1.7 Global variables and the global statement
By default, assignment in a function or method creates local variables.

Reference (not assignment) to a variable, accesses a local variable if it has already been
created, else accesses a global variable.

In order to assign a value to a global variable, declare the variable as global at the
beginning of the function or method.

If in a function or method, you both reference and assign to a variable, then you must
either:

1. Assign to the variable first, or

2. Declare the variable as global.
The global statement declares one or more variables, separated by commas, to be
global.

Page 58

www.EngineeringBooksPdf.com

Some examples:

A Python Book

In [1]:

In [1]: X = 3

In [2]: def t()

.. print X

In [3]:

In [3]: t()

3

In [4]: def s():

5 & X =4

In [5]:

In [5]:

In [5]: s()

In [6]: t()

3

In [7]: X = -1

In [8]: def u():

8 global X
X =5

In [9]:

In [9]: u()

In [10]: t()

5

In [16]: def v ()

..... x = X
..... X =6
..... return x

In [17]

In [17]: v ()

Traceback (most recent call last):
File "<ipython console>", line 1, in <module>
File "<ipython console>", line 2, in v

UnboundLocalError: local variable 'X' referenced before assignment

In [18]: def w():

..... global X
coood x = X
..... X =17
..... return x

In [19]

In [19]: w()

Out[19]: 5

In [20]: X

Oout[20]: 7

Page 59

www.EngineeringBooksPdf.com

A Python Book

1.7.1.8 Doc strings for functions

Add docstrings as a triple-quoted string beginning with the first line of a function or
method. See epydoc for a suggested format.

1.7.1.9 Decorators for functions

A decorator performs a transformation on a function. Examples of decorators that are
built-in functions are: @classmethod, @staticmethod, and @property. See:
http://docs.python.org/2/library/functions.html#built-in-functions

A decorator is applied using the "@" character on a line immediately preceeding the
function definition header. Examples:

class SomeClass (object) :

@classmethod
def HelloClass(cls, arqg):
pass
HelloClass = classmethod (HelloClass)

@staticmethod
def HelloStatic (arg) :
pass
HelloStatic = staticmethod(HelloStatic)

#
Define/implement a decorator.
def wrapper (fn) :
def inner_fn(*args, **kwargs):
print '>>"
result = fn(*args, **kwargs)
print '<<'
return result
return inner_ fn

#
Apply a decorator.
@wrapper
def fnl (msg) :
pass
fnl = wrapper (fnl)

Notes:

e The decorator form (with the "@" character) is equivalent to the form
(commented out) that calls the decorator function explicitly.

e The use of classmethods and staticmethod will be explained later in the
section on object-oriented programming.

e A decorator is implemented as a function. Therefore, to learn about some specific

Page 60

www.EngineeringBooksPdf.com

A Python Book

decorator, you should search for the documentation on or the implementation of
that function. Remember that in order to use a function, it must be defined in the
current module or imported by the current module or be a built-in.

e The form that explicitly calls the decorator function (commented out in the
example above) is equivalent to the form using the "@" character.

1.7.2 lambda

Use a lambda, as a convenience, when you need a function that both:

e is anonymous (does not need a name) and
e contains only an expression and no statements.

Example:
In [1] fn = lambda x, y, z: (x ** 2) + (y * 2) + z
In [2] fn(4, 5, 6)
Oout[2]: 32
In [3]:
In [3]: format = lambda obj, category: 'The "%s" is a "%s".' % (obj,
category,)
In [4]: format ('pine tree', 'conifer')
Oout [4] 'The "pine tree" is a "conifer".'

A lambda can take multiple arguments and can return (like a function) multiple values.
Example:

In [79] a = lambda x, y: (x * 3, yv * 4, (x, y))
In [80]:

In [81l]: a(3, 4)

Out[81]: (9, 16, (3, 4))

Suggestion: In some cases, a lambda may be useful as an event handler.

Example:

class Test:

def _ init_ (self, first='"', last='"):
self.first = first
self.last = last

def test (self, formatter):
mwmwn
Test for lambdas.
formatter is a function taking 2 arguments, first and last

names. It should return the formatted name.

mwmwn
msg = 'My name is %s' % (formatter(self.first, self.last),)
print msg

def test () :
t = Test ('Dave', 'Kuhlman')

Page 61

www.EngineeringBooksPdf.com

A Python Book

t.test (lambda first, last: '%s %s' % (first, last,))
t.test (lambda first, last: '%s, %s' % (last, first,))

test ()

A lambda enables us to define "functions" where we do not need names for those
functions. Example:

In [45]: a = [
....: lambda x: x,
....: lambda x: x * 2,

In [46]

In [46] a

Out [46] [<function _ main__ .<lambda>>, <function _ main__.<lambda>>]
In [47]: al[0] (3)

Oout[47]: 3

In [48]: al[l] (3)

Out[48]: 6

Reference: http://docs.python.org/2/reference/expressions.html#lambda

1.7.3 lIterators and generators
Concepts:
iterator

And iterator is something that satisfies the iterator protocol. Clue: If it's an iterator,
you can use it in a for : statement.

generator

A generator is a class or function that implements an iterator, i.e. that implements the
iterator protocol.

the iterator protocol
An object satisfies the iterator protocol if it does the following:

o Itimplements a __iter__ method, which returns an iterator object.
o Itimplements a next function, which returns the next item from the
collection, sequence, stream, etc of items to be iterated over
o Itraises the StopIteration exception when the items are exhausted and
the next () method is called.
yield

The yield statement enables us to write functions that are generators. Such
functions may be similar to coroutines, since they may "yield" multiple times and are
resumed.

Page 62

www.EngineeringBooksPdf.com

A Python Book

For more information on iterators, see the section on iterator types in the Python Library
Reference -- http://docs.python.org/2/library/stdtypes.html#iterator-types.

For more on the yield statement, see:
http://docs.python.org/2/reference/simple_stmts.html#the-yield-statement

Actually, yield is an expression. For more on yield expressions and on the next ()
and send () generator methods, as well as others, see: Yield expression --
http://docs.python.org/2/reference/expressions.html#yield-expressions in the Python
language reference manual.

A function or method containing a yield statement implements a generator. Adding the
yield statement to a function or method turns that function or method into one which,
when called, returns a generator, i.e. an object that implements the iterator protocol.

A generator (a function containing yield) provides a convenient way to implement a
filter. But, also consider:

e The filter () built-in function
e List comprehensions with an i f clause
Here are a few examples:

def simplegenerator():
yield 'aaa' # Note 1
yield 'bbb'
yield 'ccc'

def list_tripler (somelist):
for item in somelist:
item *= 3
yield item

def limit_iterator (somelist, max):
for item in somelist:
if item > max:
return # Note 2
yield item

def test():
print '1.', '=-' * 30
it = simplegenerator ()

for item in it:

print item
print '2.', '-' * 30
alist = range(5)
it = list_tripler(alist)
for item in it:

print item
print '3.', '-' * 30
alist = range(8)

Page 63

www.EngineeringBooksPdf.com

A Python Book

it = limit_iterator(alist, 4)
for item in it:
print item

print '4.', '-' * 30
it = simplegenerator ()
try:

print it.next () # Note 3
print it.next ()
print it.next ()
print it.next ()
except Stoplteration, exp: # Note 4
print 'reached end of sequence'’
if __ name_ == '_ main__ ':
test ()

Notes:

1. The yield statement returns a value. When the next item is requested and the
iterator is "resumed", execution continues immediately after the yield
statement.

2. We can terminate the sequence generated by an iterator by using a return
statement with no value.

3. To resume a generator, use the generator's next () or send () methods.
send () is like next (), but provides a value to the yield expression.

4. We can alternatively obtain the items in a sequence by calling the iterator's
next () method. Since an iterator is a first-class object, we can save it in a data
structure and can pass it around for use at different locations and times in our
program.

1. When an iterator is exhausted or empty, it throws the StopIteration
exception, which we can catch.

And here is the output from running the above example:

$ python test_iterator.py

Page 64

www.EngineeringBooksPdf.com

A Python Book

bbb
ccc
reached end of sequence

An instance of a class which implements the __iter__ method, returning an iterator, is
iterable. For example, it can be used in a for statement or in a list comprehension, or in
a generator expression, or as an argument to the iter () built-in method. But, notice
that the class most likely implements a generator method which can be called directly.

Examples -- The following code implements an iterator that produces all the objects in a
tree of objects:

class Node:
def _ init__ (self, data, children=None) :
self.initlevel = 0
self.data = data
if children is None:
self.children = []

else:
self.children = children
def set_initlevel (self, initlevel): self.initlevel = initlevel
def get_initlevel (self): return self.initlevel

def addchild(self, child):
self.children.append(child)
def get_data(self) :
return self.data
def get_children (self):
return self.children
def show_tree(self, level):
self.show_1level (level)
print 'data: %$s' % (self.data,)
for child in self.children:
child.show_tree(level + 1)
def show_level (self, level):
print ' ' * level,
#
Generator method #1
This generator turns instances of this class into iterable
objects.
#
def walk_tree(self, level):
yield (level, self,)
for child in self.get_children() :
for levell, treel in child.walk_tree(level+l) :
yield levell, treel
def _ iter (self):
return self.walk_tree(self.initlevel)

Page 65

www.EngineeringBooksPdf.com

A Python Book

#
Generator method #2

This generator uses a support function (walk_list) which calls
this function to recursively walk the tree.

If effect, this iterates over the support function, which

iterates over this function.

#

d

ef walk_tree(tree, level):
yield (level, tree)
for child in walk_list (tree.get_children(), level+l):
yield child

def walk_list (trees, level):
for tree in trees:
for tree in walk_tree(tree, level):
yield tree

#
Generator method #3
This generator is like method #2, but calls itself (as an
iterator),
rather than calling a support function.
#
def walk_tree_recur (tree, level):

yield (level, tree,)

for child in tree.get_children():

for levell, treel in walk_tree_recur (child, level+l):
yield (levell, treel,)

def show_level (level) :

print ' ' * level,

def test () :
a7 = Node ('777")
a6 = Node ('666")
a5 = Node ('555")
a4 = Node ('444")
a3 = Node ('333', [a4, a5])
a2 = Node ('222', [a6, a7])
al = Node('11l1', [a2, a3])
initLevel = 2
al.show_tree (initLevel)
print '=' * 40

for level, item in walk_tree(al, initLevel) :
show_level (level)
print 'item:', item.get_data()

print '=' * 40

for level, item in walk_tree_recur(al, initLevel) :
show_level (level)
print 'item:', item.get_data/()

Page 66

www.EngineeringBooksPdf.com

A Python Book

print '=' * 40
al.set_initlevel (initLevel)
for level, item in al:

show_level (level)

print 'item:', item.get_data/()
iterl = iter(al)
print iterl
print iterl.next ()
print iterl.next ()
print iterl.next ()
print iterl.next ()
print iterl.next ()
print iterl.next ()
print iterl.next ()

#4 print iterl.next

return al

0)

if _ name_ == '__ _main__ ':
test ()

Notes:

e An instance of class Node is "iterable". It can be used directly ina for
statement, a list comprehension, etc. So, for example, when an instance of Node
is used in a for statement, it produces an iterator.

e We could also call the Node .walk_method directly to obtain an iterator.

e Method Node.walk_tree and functions walk_tree and
walk_tree_recur are generators. When called, they return an iterator. They
do this because they each contain a yield statement.

e These methods/functions are recursive. They call themselves. Since they are
generators, they must call themselves in a context that uses an iterator, for
example in a for statement.

1.7.4 Modules

A module is a Python source code file.

A module can be imported. When imported, the module is evaluated, and a module object
is created. The module object has attributes. The following attributes are of special
interest:

e _ doc__ -- The doc string of the module.
e _ name__ -- The name of the module when the module is imported, but the
string "__main__" when the module is executed.
e Other names that are created (bound) in the module.
A module can be run.

To make a module both import-able and run-able, use the following idiom (at the end of

Page 67

www.EngineeringBooksPdf.com

A Python Book

the module):

def main () :
o
o
o
if _ name_ == '_ main_ ':
main ()

Where Python looks for modules:

e See sys.path.

e Standard places.

e Environment variable PYTHONPATH.
Notes about modules and objects:

e A module is an object.

e A module (object) can be shared.

e A specific module is imported only once in a single run. This means that a single
module object is shared by all the modules that import it.

1.7.4.1 Doc strings for modules

Add docstrings as a triple-quoted string at or near the top of the file. See epydoc for a
suggested format.

1.7.5 Packages
A package is a directory on the file system which contains a file named __init__ .py.
The _ _init__ .py file:

e Why is it there? -- It makes modules in the directory "import-able".

e Can__init__ .py beempty? -- Yes. Or, just include a comment.

e When is it evaluated? -- It is evaluated the first time that an application imports
anything from that directory/package.

e What can you do with it? -- Any code that should be executed exactly once and
during import. For example:

o Perform initialization needed by the package.

o Make variables, functions, classes, etc available. For example, when the
package is imported rather than modules in the package. You can also expose
objects defined in modules contained in the package.

e Define a variable named __all___ to specify the list of names that will be
imported by from my_package import *.For example, if the following is
present in my_package/__init__ .py:

Page 68

www.EngineeringBooksPdf.com

A Python Book

‘ all = ['"funcl', 'func2',]

Then, from my_package import * will import funcl and func2, but
not other names defined in my_package.
Note that __all___ can be used at the module level, as well as at the package
level.
For more information, see the section on packages in the Python tutorial:
http://docs.python.org/2/tutorial/modules.html#packages.

Guidance and suggestions:

e '"Flatis better" -- Usethe __init__ .py file to present a "flat" view of the API
for your code. Enable your users to do import mypackage and then

reference:
o mypackage.iteml
o mypackage.item2
o mypackage.item3
o Etc.
Where iteml, item2, etc compose the APl you want your users to use, even
though the implementation of these items may be buried deep in your code.

e Usethe___init__ .py module to present a "clean" API. Present only the items
that you intend your users to use, and by doing so, "hide" items you do not intend
them to use.

1.8 Classes

Classes model the behavior of objects in the "real" world. Methods implement the
behaviors of these types of objects. Member variables hold (current) state. Classes enable
us to implement new data types in Python.

The class: statement is used to define a class. The class: statement creates a class
object and binds it to a name.

1.8.1 A simple class

In [104]: class A:
600008 pass

To define a new style class (recommended), inherit from ob ject or from another class
that does. Example:

In [21]: class A(object):
et pass

Page 69

www.EngineeringBooksPdf.com

A Python Book

In [22]:

In [22]: a = A()

In [23]: a

Out[23]: <_main__.A object at 0x82fbfcc>

1.8.2 Defining methods

A method is a function defined in class scope and with first parameter sel f:

In [106]: class B(object):
600008 def show(self):
PP print 'hello from B'
In [107]: b = B()
In [108]: b.show()
hello from B

A method as we describe it here is more properly called an instance method, in order to
distinguish it from class methods and static methods.

1.8.3 The constructor
The constructor is a method named __init .

Exercise: Define a class with a member variable name and a show method. Use print
to show the name. Solution:

In [109]: class A(object):
600008 def __ _init__ (self, name):
e self.name = name
600008 def show(self):
I print 'name: "%s"' % self.name
In [111]: a = A('dave')
In [112]: a.show()
name: "dave"

Notes:
e The self variable is explicit. It references the current object, that is the object
whose method is currently executing.
e The spelling ("self") is optional, but everyone spells it that way.
1.8.4 Member variables

Defining member variables -- Member variables are created with assignment. Example:

class A(object):
def __ _init__ (self, name):

Page 70

www.EngineeringBooksPdf.com

A Python Book

‘ self.name = name

A small gotcha -- Do this:

In [28]: class A(object):
50008 def _ init_ (self, items=None) :
5000 8 if items is None:
500 0s self.items = []
PR else:
50008 self.items = items

In [29]: class B:

50008 def _ init_ (self, items=[]): # wrong. list ctor
evaluated only once.

5000 & self.items = items

In the second example, the de £ statement and the list constructor are evaluated only
once. Therefore, the item member variable of all instances of class B, will share the same
value, which is most likely not what you want.

1.8.5 Calling methods

e Use the instance and the dot operator.
e Calling a method defined in the same class or a superclass:
o From outside the class -- Use the instance:

some_object.some_method ()
an_array_of_of_objects[l].another _method()

o From within the same class -- Use self:

‘ self.a_method()

o From with a subclass when the method is in the superclass and there is a
method with the same name in the current class -- Use the class (name) or use

super:
SomeSuperClass.__init__ (self, argl, arg2)
super (CurrentClass,
self).__init__ (argl, arg2)

e Calling a method defined in a specific superclass -- Use the class (name).

1.8.6 Adding inheritance

Referencing superclasses -- Use the built-in super or the explicit name of the
superclass. Use of super is preferred. For example:

‘In [39]: class B(A):

Page 71

www.EngineeringBooksPdf.com

A Python Book

50008 def _ init_ (self, name, size):
coood super (B, self)._ _init__ (name)
50008 # A._ _init_ (self, name) # an older alternative

50008 self.size = size

The use of super () may solve problems searching for the base class when using
multiple inheritance. A better solution is to not use multiple inheritance.

You can also use multiple inheritance. But, it can cause confusion. For example, in the
following, class C inherits from both A and B:

class C(A, B):

Python searches superclasses MRO (method resolution order). If only single inheritance
is involved, there is little confusion. If multiple inheritance is being used, the search order
of super classes can get complex -- see here:
http://www.python.org/download/releases/2.3/mro

For more information on inheritance, see the tutorial in the standard Python
documentation set: 9.5 Inheritance and 9.5.1 Multiple Inheritance.

Watch out for problems with inheriting from multiple classes that have a common base
class.

1.8.7 Class variables

e Also called static data.
e A class variable is shared by instances of the class.
e Define at class level with assignment. Example:

class A(object) :
size = 5
def get_size(self):
return A.size

o Reference with classname.variable.
e Caution: self.variable = x creates a new member variable.

1.8.8 Class methods and static methods
Instance (plain) methods:

e An instance method receives the instance as its first argument.
Class methods:

e A class method receives the class as its first argument.
e Define class methods with built-in function classmethod () or with decorator

Page 72

www.EngineeringBooksPdf.com

A Python Book

@classmethod.
e See the description of classmethod () built-in function at "Built-in
Functions": http://docs.python.org/2/library/functions.html#classmethod
Static methods:

e A static method receives neither the instance nor the class as its first argument.
e Define static methods with built-in function staticmethod () or with
decorator @staticmethod.
e See the description of staticmethod () built-in function at "Built-in
Functions": http://docs.python.org/2/library/functions.html#staticmethod
Notes on decorators:

e A decorator of the form @afunc is the same asm = afunc (m). So, this:

Qafunc
def m(self): pass

is the same as:

def m(self): pass
m = afunc (m)

e You can use decorators @classmethod and @staticmethod (instead of the
classmethod () and staticmethod () built-in functions) to declare class
methods and static methods.

Example:

class B(object) :
Count = 0

def dup_string(x) :
sl '$s%s' % (x, X,)
return sl
dup_string = staticmethod (dup_string)

@classmethod
def show_count (cls, msqg):

[o)

print '$s %d' % (msg, cls.Count,)

def test () :
print B.dup_string('abcd')
B.show_count ('"here is the count: ')

An alternative way to implement "static methods" -- Use a "plain", module-level
function. For example:

In [1]: def inc_count () :
g A.count += 1

In iéi;

Page 73

www.EngineeringBooksPdf.com

A Python Book

In [2]: def dec_count () :
g A.count —-= 1
In [3]:
In [3]: class A:
count = 0

def get_count (self) :
return A.count

In [4]:

In [4]: a = A()

In [5]: a.get_count ()
Out[5]: O

In [6]:

In [6]:

In [6]: inc_count ()
In [7]: inc_count ()
In [8]: a.get_count ()
Out[8]: 2

In [9]:

In [9]: b = A()

In [10]: b.get_count ()
Qut[10]: 2

1.8.9 Properties

The property built-in function enables us to write classes in a way that does not require a
user of the class to use getters and setters. Example:

class TestProperty (object) :
def _ _init_ (self, description):
self._description = description
def _set_description(self, description):
print 'setting description'’
self. description = description
def _get_description(self):
print 'getting description'
return self._description
description = property(_get_description, _set_description)

The property built-in function is also a decorator. So, the following is equivalent to
the above example:

class TestProperty (object) :
def _ _init_ (self, description):
self._description = description

@property

def description(self):
print 'getting description'
return self._description

Page 74

www.EngineeringBooksPdf.com

A Python Book

@description.setter

def description(self, description):
print 'setting description'
self._description = description

Notes:

e We mark the instance variable as private by prefixing it with and underscore.
e The name of the instance variable and the name of the property must be different.
If they are not, we get recursion and an error.
For more information on properties, see Built-in Functions -- properties --
http://docs.python.org/2/library/functions.html#property

1.8.10 Interfaces

In Python, to implement an interface is to implement a method with a specific name and a
specific arguments.

"Duck typing" -- If it walks like a duck and quacks like a duck ...

One way to define an "interface" is to define a class containing methods that have a
header and a doc string but no implementation.

Additional notes on interfaces:

e Interfaces are not enforced.
e A class does not have to implement all of an interface.

1.8.11 New-style classes

A new-style class is one that subclasses ob ject or a class that subclasses object (that
is, another new-style class).

You can subclass Python's built-in data-types.

e A simple example -- the following class extends the list data-type:

class C(list):
def get_len(self):
return len(self)

c = C((11,22,33))
c.get_1len()

c =C((11,22,33,44,55,66,77,88))
print c.get_len ()
Prints "8".

e A slightly more complex example -- the following class extends the dictionary

Page 75

www.EngineeringBooksPdf.com

A Python Book

data-type:

class D(dict) :
def _ _init_ (self, data=None, name='no_name') :
if data is None:
data = {}
dict.__init__ (self, data)
self.name = name
def get_len(self):
return len(self)
def get_keys(self):
content = []
for key in self:
content.append (key)
contentstr = ', '.join(content)
return contentstr
def get_name (self) :
return self.name

def test () :
d =D({'aa': 111, 'bb':222, 'cc':333})
Prints "3"
print d.get_len ()
Prints "'aa, cc, bb'"
print d.get_keys ()
Prints "no_name"
print d.get_name ()

Some things to remember about new-style classes:

e In order to be new-style, a class must inherit (directly or indirectly) from
object. Note that if you inherit from a built-in type, you get this automatically.

e New-style classes unify types and classes.

e You can subclass (built-in) types such as dict, str, list, file, etc.

e The built-in types now provide factory functions: dict (), str (), int (),
file (), etc.

e The built-in types are introspect-able -- Use x.__class__,
dir(x.__class_),isinstance(x, list), etc.

e New-style classes give you properties and descriptors.

e New-style classes enable you to define static methods. Actually, all classes enable
you to do this.

e A new-style class is a user-defined type. For an instance of a new-style class X,
type (x) isthe same as x.___class__ .

For more on new-style classes, see: http://www.python.org/doc/newstyle/

Exercises:

e Write a class and a subclass of this class.
o Give the superclass one member variable, a name, which can be entered when

Page 76

www.EngineeringBooksPdf.com

A Python Book

an instance is constructed.

o Give the subclass one member variable, a description; the subclass constructor
should allow entry of both name and description.

o Puta show () method in the superclass and override the show () method in
the subclass.

Solution:
class A(object):
def _ init_ (self, name):
self.name = name

def show(self):
print 'name: %$s' % (self.name,)

class B(A):
def _ init__ (self, name, desc):
A._ _init_ (self, name)
self.desc = desc

def show(self) :
A.show (self)
print 'desc: %s' % (self.desc,)

1.8.12 Doc strings for classes

Add docstrings as a (triple-quoted) string beginning with the first line of a class. See
epydoc for a suggested format.

1.8.13 Private members

Add an leading underscore to a member name (method or data variable) to "suggest" that
the member is private.

1.9 Special Tasks

1.9.1 Debugging tools
pdb -- The Python debugger:

e Start the debugger by running an expression:

‘ pdb.run ('expression')

Example:

if name == ' main '

import pdb
pdb.run('main() ")

e Start up the debugger at a specific location with the following:

Page 77

www.EngineeringBooksPdf.com

A Python Book

‘ import pdb; pdb.set_trace()

Example:
if _ _name_ == '__main_ ':
import pdb
pdb.set_trace ()
main ()

e Get help from within the debugger. For example:

(Pdb) help
(Pdb) help next

Can also embed IPython into your code. See
http://ipython.scipy.org/doc/manual/manual. html.

ipdb -- Also consider using ipdb (and IPython). The ipdb debugger interactive
prompt has some additional features, for example, it does tab name completion.

Inspecting:

e import inspect

e See http://docs.python.org/lib/module-inspect.html.

e Don't forgettotry dir (obj) and type (obj) and help (ob7j), first.
Miscellaneous tools:

e id(obj)
e globals () and locals ().
e dir (obj) -- Returns interesting names, but list is not necessarily complete.
e obj._ class_
e cls._ bases_
e obj._ class_ ._ bases_
e obj._ _doc__.Butusually, help (ob7j) is better. It produces the doc string.
e Customize the representation of your class. Define the following methods in your
class:
o __repr__ () --Called by (1) repr (), (2) interactive interpreter when
representation is needed.
o __str__ () --Calledby (1) str (), (2) string formatting.

pdb is implemented with the cmd module in the Python standard library. You can
implement similar command line interfaces by using cmd. See: cmd -- Support for
line-oriented command interpreters -- http://docs.python.org/lib/module-cmd.html.

1.9.2 File input and output
Create a file object. Use open () .

This example reads and prints each line of a file:

Page 78

www.EngineeringBooksPdf.com

A Python Book

def test () :
f = file('"tmp.py', 'r'")
for line in f:
print 'line:', line.rstrip()
f.close ()

test ()

Notes:

e A text file is an iterable. It iterates over the lines in a file. The following is a
common idiom:

infile = file(filename, 'r')

for line in infile:
process_a_line (line)

infile.close ()

e string.rstrip () strips new-line and other whitespace from the right side of
each line. To strip new-lines only, but not other whitespace, try rstrip('\n").
e Other ways of reading from a file/stream object: my_file.read (),
my_file.readline(),my_file.readlines(),
This example writes lines of text to a file:

def test () :
f = file('"tmp.txt', 'w')
for ch in 'abcdefg':
f.write(ch * 10)
f.write('\n")
f.close ()

test ()

Notes:

e The write method, unlike the print statement, does not automatically add
new-line characters.
e Must close file in order to flush output. Or,use my_file.flush ().
And, don't forget the with : statement. It makes closing files automatic. The following
example converts all the vowels in an input file to upper case and writes the converted
lines to an output file:

import string

def show_file(infilename, outfilename) :

tran_table = string.maketrans('aeiou', 'AEIOU')
with open(infilename, 'r') as infile, open(outfilename, 'w') as
outfile:
for line in infile:
line = line.rstrip()

outfile.write('$s\n' % line.translate(tran_table))

Page 79

www.EngineeringBooksPdf.com

A Python Book

1.9.3 Unit tests

For more documentation on the unit test framework, see unittest -- Unit testing
framework -- http://docs.python.org/2/library/unittest.html#module-unittest

For help and more information do the following at the Python interactive prompt:

>>> import unittest
>>> help (unittest)

And, you can read the source: Lib/unittest.py in the Python standard library.

1.9.3.1 A simple example

Here is a very simple example. You can find more information about this primitive way
of structuring unit tests in the library documentation for the unittest module Basic
example -- http://docs.python.org/lib/minimal-example.html

import unittest
class UnitTests02 (unittest.TestCase) :

def testFoo(self):
self.failUnless (False)

class UnitTests01l (unittest.TestCase) :

def testBar01l (self):
self.failUnless (False)

def testBar02 (self):
self.failUnless (False)

def main () :
unittest.main ()

if _ name_ == '__main__ ':
main ()

Notes:

e Thecalltounittest.main () runs all tests in all test fixtures in the module. It
actually creates an instance of class TestProgram in module
Lib/unittest.py, which automatically runs tests.

e Test fixtures are classes that inherit from unittest.TestCase.

e Within a test fixture (a class), the tests are any methods whose names begin with
the prefix "test".

e In any test, we check for success or failure with inherited methods such as
failIf (), failUnless (), assertNotEqual (), etc. For more on these

Page 80

www.EngineeringBooksPdf.com

A Python Book

methods, see the library documentation for the unittest module TestCase
Objects -- http://docs.python.org/lib/testcase-objects.html.

e If you want to change (1) the test method prefix or (2) the function used to sort
(the order of) execution of tests within a test fixture, then you can create your own
instance of class unittest.TestLoader and customize it. For example:

def main() :
my_test_loader = unittest.TestLoader ()
my_test_loader.testMethodPrefix = 'check'
my_test_loader.sortTestMethodsUsing = my_cmp_func
unittest.main (testLoader=my_test_loader)

if name == '__main__ ':
main ()

But, see the notes in section Additional unittest features for instructions on a
(possibly) better way to do this.

1.9.3.2 Unit test suites

Here is another, not quite so simple, example:

#!/usr/bin/env python
import sys, popen2
import getopt

import unittest

class GenTest (unittest.TestCase) :

def test_1_generate(self):

cmd = 'python ../generateDS.py —-f -o out2sup.py —-s out2sub.py
people.xsd’

outfile, infile = popen2.popen2 (cmd)

result = outfile.read()

outfile.close ()
infile.close ()
self.failUnless (len (result) == 0)

def test_2_compare_superclasses (self):
cmd = 'diff outlsup.py out2sup.py’
outfile, infile = popen2.popen2 (cmd)
outfile, infile = popen2.popen2 (cmd)
result = outfile.read()
outfile.close ()
infile.close ()
#print 'len(result):', len(result)
Ignore the differing lines containing the date/time.
#self.failUnless (len(result) < 130 and

result.find ('Generated') > -1)

Page 81

www.EngineeringBooksPdf.com

A Python Book

self.failUnless (check_result (result))

def test_3_compare_subclasses (self) :

cmd = 'diff outlsub.py out2sub.py’

outfile, infile = popen2.popen2 (cmd)

outfile, infile = popen2.popen2 (cmd)

result = outfile.read()

outfile.close ()

infile.close()

Ignore the differing lines containing the date/time.

#self.failUnless (len(result) < 130 and
result.find ('Generated') > -1)

self.failUnless (check_result (result))

def check_result (result) :

flagl = 0

flagz2 = 0

lines = result.split('\n'")

lenl = len(lines)

if lenl <= 5:
flagl =1

sl = '\n'.join(lines[:4])

if sl.find('Generated') > -1:
flag2 =1

return flagl and flag2

Make the test suite.
def suite():
The following is obsolete. See Lib/unittest.py.
#return unittest.makeSuite (GenTest)
loader = unittest.TestLoader ()
or alternatively
loader = unittest.defaultTestLoader
testsuite = loader.loadTestsFromTestCase (GenTest)
return testsuite

Make the test suite and run the tests.

def test () :

testsuite = suite ()

runner = unittest.TextTestRunner (sys.stdout, verbosity=2)
runner.run (testsuite)

USAGE_TEXT = """
Usage:
python test.py [options]
Options:
-h, —--help Display this help message.
Example:

python test.py

Page 82

www.EngineeringBooksPdf.com

A Python Book

mmwn

if

def usage() :

print USAGE_TEXT
sys.exit (-1)

def main () :

args = sys.argv[l:]
try:
opts, args = getopt.getopt (args, 'h', ['help'])
except:
usage ()
relink = 1
for opt, val in opts:
if opt in ('-h', '--help'):
usage ()
if len(args) !=
usage ()
test ()

0:

name == '_ main Jg

main ()
#import pdb
#fpdb.run ('main() ")

Notes:

1.9.3.3

GenTest is our test suite class. It inherits from unittest.TestCase.
Each method in GenTest whose name begins with "test" will be run as a test.
The tests are run in alphabetic order by method name.

Defaults in class Test Loader for the test name prefix and sort comparison
function can be overridden. See 5.3.8 TestLoader Objects --
http://docs.python.org/lib/testloader-objects.html.

A test case class may also implement methods named setUp () and
tearDown () to be run before and after tests. See 5.3.5 TestCase Objects --
http://docs.python.org/lib/testcase-objects.html. Actually, the first test method in
our example should, perhaps, be a setUp () method.

The tests use calls such as self.failUnless () to report errors. These are
inherited from class TestCase. See 5.3.5 TestCase Objects --
http://docs.python.org/lib/testcase-objects.html.

Function suite () creates an instance of the test suite.

Function test () runs the tests.

Additional unittest features

And, the following example shows several additional features. See the notes that follow

Page 83

www.EngineeringBooksPdf.com

A Python Book

the code:

import unittest

class UnitTests02 (unittest.TestCase) :
def testFoo(self):
self.failUnless (False)
def checkBar01l (self) :
self.failUnless (False)

class UnitTests01l (unittest.TestCase) :
Note 1
def setUp(self):
print 'setting up UnitTestsO0l'
def tearDown (self) :
print 'tearing down UnitTestsO01'
def testBar01l (self):
print 'testing testBar01l'
self.failUnless (False)
def testBar02 (self):
print 'testing testBar02'
self.failUnless (False)

def function_test_1():
name = 'mona'
assert not name.startswith('mo')

def compare_names (namel, name2) :
if namel < name2:
return 1
elif namel > name2:
return -1
else:
return O

def make_suite () :
suite = unittest.TestSuite ()
Note 2
suite.addTest (unittest.makeSuite (UnitTests01,
sortUsing=compare_names))
Note 3
suite.addTest (unittest.makeSuite (UnitTests02, prefix='check'))
Note 4
suite.addTest (unittest.FunctionTestCase (function_test_1))
return suite

def main () :
suite = make_suite ()
runner = unittest.TextTestRunner ()
runner.run (suite)

if name == main Ly

Page 84

www.EngineeringBooksPdf.com

A Python Book

‘ main ()

Notes:

1. If you run this code, you will notice that the setUp and tearDown methods in
class UnitTests01 are run before and after each test in that class.

2. We can control the order in which tests are run by passing a compare function to
the makeSuite function. The default is the cmp built-in function.

3. We can control which methods in a test fixture are selected to be run by passing
the optional argument prefix to the makeSuite function.

4. If we have an existing function that we want to "wrap" and run as a unit test, we
can create a test case from a function with the FunctionTestCase function. If
we do that, notice that we use the assert statement to test and possibly cause
failure.

1.9.3.4 Guidance on Unit Testing
Why should we use unit tests? Many reasons, including:

e Without unit tests, corner cases may not be checked. This is especially important,
since Python does relatively little compile time error checking.

e Unit tests facilitate a frequent and short design and implement and release
development cycle. See ONLamp.com -- Extreme Python --
http://www.onlamp.com/pub/a/python/2001/03/28/pythonnews.html and What is
XP -- http://www.xprogramming.com/what_is_xp.htm.

e Designing the tests before writing the code is "a good idea".

Additional notes:

e In atest class, instance methods setUp and tearDown are run automatically
before each and after each individual test.

e In atest class, class methods setUpClass and tearDownClass are run
automatically once before and after all the tests in a class.

e Module level functions setUpModule and tearDownModule are run before
and after any tests in a module.

e In some cases you can also run tests directly from the command line. Do the
following for help:

‘ $ python —-m unittest —--help

1.9.4 doctest

For simple test harnesses, consider using doctest. With doctest youcan (1) runa
test at the Python interactive prompt, then (2) copy and paste that test into a doc string in
your module, and then (3) run the tests automatically from within your module under

Page 85

www.EngineeringBooksPdf.com

A Python Book

doctest.

There are examples and explanation in the standard Python documentation: 5.2 doctest --
Test interactive Python examples -- http://docs.python.org/lib/module-doctest.html.

A simple way to use doctest in your module:

1. Run several tests in the Python interactive interpreter. Note that because
doctest looks for the interpreter's ">>>" prompt, you must use the standard
interpreter, and not, for example, IPython. Also, make sure that you include a line
with the ">>>" prompt after each set of results; this enables doctest to
determine the extent of the test results.

2. Use copy and paste, to insert the tests and their results from your interactive
session into the docstrings.

3. Add the following code at the bottom of your module:

def _test():
import doctest
doctest.testmod ()

if _ _name_ == "__main__":
_test ()

Here is an example:

def f(n):

mmn

Print something funny.

>>> £ (1)

10

>>> £ (2)

-10

>>> £ (3)

0

if n ==
return 10

elif n == 2:
return -10

else:
return O

def test () :
import doctest, test_doctest
doctest.testmod (test_doctest)
if _ name_ == '__ _main__ ':
test ()

And, here is the output from running the above test with the —v flag:

Page 86

www.EngineeringBooksPdf.com

A Python Book

S python test_doctest.py -v
Running test_doctest._ doc_
0 of 0 examples failed in test_doctest.__doc
Running test_doctest.f.__ _doc_
Trying: f(1)
Expecting: 10
ok
Trying: £(2)
Expecting: -10
ok
Trying: £ (3)
Expecting: O
ok
0 of 3 examples failed in test_doctest.f._ doc___
Running test_doctest.test._ _doc_
0 of 0 examples failed in test_doctest.test._ _doc_
2 items had no tests:
test_doctest
test_doctest.test
1 items passed all tests:
3 tests in test_doctest.f
3 tests in 3 items.
3 passed and 0 failed.
Test passed.

1.9.5 The Python database API

Python database API defines a standard interface for access to a relational database.

In order to use this API you must install the database adapter (interface module) for your
particular database, e.g. PostgreSQL, MySQL, Oracle, etc.

You can learn more about the Python DB-API here:
http://www.python.org/dev/peps/pep-0249/

The following simple example uses sqlite3 -- http://docs.python.org/2/library/sqlite3.html

#!/usr/bin/env python

wnw

Create a relational database and a table in it.
Add some records.
Read and display the records.

mmn

import sys
import sqglite3

def create_table (db_name) :
con = sqglite3.connect (db_name)
cursor = con.cursor ()
cursor.execute ('''CREATE TABLE plants

Page 87

www.EngineeringBooksPdf.com

A Python Book

(name text, desc text, cat int)''")
cursor.execute (
'"'TINSERT INTO plants VALUES ('tomato', 'red and juicy',

l)lll)
cursor.execute (
'''INSERT INTO plants VALUES ('pepper', 'green and crunchy',
2)!!!)
cursor.execute ('''INSERT INTO plants VALUES ('pepper', 'purple',
2)"')

con.commit ()
con.close ()

def retrieve (db_name) :

con = sqglite3.connect (db_name)

cursor = con.cursor ()

cursor.execute ('''select * from plants''')
rows = cursor.fetchall ()

print rows

print '-' * 40

cursor.execute ('''select * from plants''')

for row in cursor:
print row
con.close ()

def test():
args = sys.argv[l:]
if len(args) != 1:

sys.stderr.write ('\nusage: test_db.py <db_name>\n\n"')
sys.exit (1)

db_name = args[0]

create_table (db_name)

retrieve (db_name)

test ()

1.9.6 Installing Python packages
Simple:

$ python setup.py build
$ python setup.py install # as root

More complex:

e Look for a README or INSTALL file at the root of the package.
e Type the following for help:

S python setup.py cmd —--help
$ python setup.py —-—help-commands
S python setup.py —-help [cmdl cmd2 ...]

e And, for even more details, see Installing Python Modules --

Page 88

www.EngineeringBooksPdf.com

A Python Book

http://docs.python.org/inst/inst.html
pip is becoming popular for installing and managing Python packages. See:
https://pypi.python.org/pypi/pip
Also, consider using virtualenv, especially if you suspect or worry that installing
some new package will alter the behavior of a package currently installed on your
machine. See: https://pypi.python.org/pypi/virtualenv. virtualenv creates a directory
and sets up a Python environment into which you can install and use Python packages
without changing your usual Python installation.

1.10 More Python Features and Exercises

[As time permits, explain more features and do more exercises as requested by class
members.]

Thanks to David Goodger for the following list or references. His "Code Like a
Pythonista: Idiomatic Python"
(http://python.net/~goodger/projects/pycon/2007/idiomatic/) is worth a careful reading:

e "Python Objects", Fredrik Lundh, http://www.effbot.org/zone/python-objects.htm

e "How to think like a Pythonista", Mark Hammond,
http://python.net/crew/mwh/hacks/objectthink.html

e "Python main() functions", Guido van Rossum,
http://www.artima.com/weblogs/viewpost.jsp?thread=4829

e "Python Idioms and Efficiency", http://jaynes.colorado.edu/Pythonldioms.html

e "Python track: python idioms",
http://www.cs.caltech.edu/courses/cs11/material/python/misc/python_idioms.html

e "Be Pythonic", Shalabh Chaturvedi, http://shalabh.infogami.com/Be_Pythonic2

e "Python Is Not Java", Phillip J. Eby,
http://dirtsimple.org/2004/12/python-is-not-java.html

e "What is Pythonic?", Martijn Faassen,
http://faassen.n--tree.net/blog/view/weblog/2005/08/06/0

e "Sorting Mini-HOWTO", Andrew Dalke,
http://wiki.python.org/moin/HowTo/Sorting

e "Python Idioms", http://www.gungfu.de/facts/wiki/Main/Pythonldioms

e "Python FAQs", http://www.python.org/doc/faq/

Page 89

www.EngineeringBooksPdf.com

A Python Book

2 Part 2 -- Advanced Python

2.1 Introduction -- Python 201 -- (Slightly) Advanced Python Topics

This document is intended as notes for a course on (slightly) advanced Python topics.

2.2 Regular Expressions
For more help on regular expressions, see:

e re - Regular expression operations http://docs.python.org/library/re.html
e Regular Expression HOWTO -- http://docs.python.org/howto/regex.html

2.2.1 Defining regular expressions

A regular expression pattern is a sequence of characters that will match sequences of
characters in a target.

The patterns or regular expressions can be defined as follows:

e Literal characters must match exactly. For example, "a" matches "a".

e Concatenated patterns match concatenated targets. For example, "ab" ("a"
followed by "b") matches "ab".

e Alternate patterns (separated by a vertical bar) match either of the alternative
patterns. For example, "(aaa)l(bbb)" will match either "aaa" or "bbb".

e Repeating and optional items:
o "abc*" matches "ab" followed by zero or more occurances of "c", for example,

"ab", "abc", "abcc", etc.

o "abc+" matches "ab" followed by one or more occurances of "c", for example,

n nn

abc", "abcc", etc, but not "ab".

o "abc?" matches "ab" followed by zero or one occurances of "c", for example,
"ab" or "abc".

e Sets of characters -- Characters and sequences of characters in square brackets
form a set; a set matches any character in the set or range. For example, "[abc]"
matches "a" or "b" or "c". And, for example, "[_a-z0-9]" matches an underscore
or any lower-case letter or any digit.

e Groups -- Parentheses indicate a group with a pattern. For example, "ab(cd)*ef" is
a pattern that matches "ab" followed by any number of occurances of "cd"
followed by "ef", for example, "abef", "abcdef", "abcdcdef", etc.

e There are special names for some sets of characters, for example "\d" (any digit),

Page 90

www.EngineeringBooksPdf.com

A Python Book

"\w" (any alphanumeric character), "\W" (any non-alphanumeric character), etc.

More more information, see Python Library Reference: Regular Expression

Syntax -- http://docs.python.org/library/re.html#regular-expression-syntax
Because of the use of backslashes in patterns, you are usually better off defining regular
expressions with raw strings, e.g. r"abc".

2.2.2 Compiling regular expressions

When a regular expression is to be used more than once, you should consider compiling
it. For example:

import sys, re

pat = re.compile('aal[bc]*dd")
while 1:
line = raw_input ('Enter a line ("g" to quit):')
if line == 'q':
break

if pat.search(line):

print 'matched:', line
else:

print 'no match:', line

Comments:

e We import module re in order to use regular expresions.
e re.compile () compiles aregular expression so that we can reuse the
compiled regular expression without compiling it repeatedly.

2.2.3 Using regular expressions
Use match () to match at the beginning of a string (or not at all).
Use search () to search a string and match the first string from the left.

Here are some examples:

>>> import re

>>> pat = re.compile('aa[0-9]*bb'")
>>> x = pat.match ('aal234bbccddee')
>>> x

<_sre.SRE_Match object at 0x401e9608>
>>> x = pat.match ('xxxxaal234bbccddee')
>>> x

>>> type (x)

<type 'NoneType'>

>>> x = pat.search ('xxxxaal234bbccddee')
>>> x

Page 91

www.EngineeringBooksPdf.com

A Python Book

‘<_sre.SRE_Match object at 0x401e9608>

Notes:

e When a match or search is successful, it returns a match object. When it fails, it

returns None.
e You can also call the corresponding functions match and search in the re module,

e.g..

>>> x = re.search(pat, 'xxxxaal234bbccddee')

>>> x
<_sre.SRE_Match object at 0x401e9560>

For a list of functions in the re module, see Module Contents --
http://docs.python.org/library/re.html#module-contents.

2.2.4 Using match objects to extract a value

Match objects enable you to extract matched sub-strings after performing a match. A
match object is returned by successful match. The part of the target available in the match
object is the portion matched by groups in the pattern, that is the portion of the pattern
inside parentheses. For example:

In [69]: mo = re.search(r'height: (\d*) width: (\d*)', 'height: 123
width: 456"'")

In [70]: mo.groups()

Out[70]: ('123', '456")

Here is another example:

import sys, re

Targets = [
'There are <<25>> sparrows.',
'T see <<15>> finches.',
'There is nothing here.',

]

def test():
pat = re.compile ('<<([0-9]%*)>>")
for line in Targets:
mo = pat.search(line)

if mo:

value = mo.group (1)

print 'value: %$s' % value
else:

print 'no match'

test ()

When we run the above, it prints out the following:

Page 92

www.EngineeringBooksPdf.com

A Python Book

value: 25
value: 15
no match

Explanation:

e In the regular expression, put parentheses around the portion of the regular
expression that will match what you want to extract. Each pair of parentheses
marks off a group.

e After the search, check to determine if there was a successful match by checking
for a matching object. "pat.search(line)" returns None if the search fails.

e If you specify more than one group in your regular expression (more that one pair
of parentheses), then you can use "value = mo.group(N)" to extract the value
matched by the Nth group from the matching object. "value = mo.group(1)"
returns the first extracted value; "value = mo.group(2)" returns the second; etc. An
argument of O returns the string matched by the entire regular expression.

In addition, you can:

e Use "values = mo.groups()" to get a tuple containing the strings matched by all
groups.

e Use "mo.expand()" to interpolate the group values into a string. For example,
"mo.expand(r'valuel: \1 value2: \2")"inserts the values of the first and second
group into a string. If the first group matched "aaa" and the second matched
"bbb", then this example would produce "valuel: aaa value2: bbb". For example:

In [76]: mo = re.search(r'h: (\d*) w: (\d*)', 'h: 123
w: 456")

In [77]: mo.expand(r'Height: \1 Width: \2'")

Out[77]: 'Height: 123 Width: 456"

2.2.5 Extracting multiple items

You can extract multiple items with a single search. Here is an example:

import sys, re

pat = re.compile('aa([0-9]*)bb([0-9]*)cc")
while 1:
line = raw_input ('Enter a line ("g" to quit):"')
if line == 'gq':
break
mo = pat.search(line)
if mo:

valuel, value2 = mo.group(l, 2)

print 'valuel: %s value2: %s' % (valuel, value2)
else:

print 'no match'

Page 93

www.EngineeringBooksPdf.com

A Python Book

Comments:

e Use multiple parenthesized substrings in the regular expression to indicate the

portions (groups) to be extracted.

e "mo.group(l, 2)" returns the values of the first and second group in the string
matched.

e We could also have used "mo.groups()" to obtain a tuple that contains both
values.

e Yet another alternative would have been to use the following: print
mo.expand (r'valuel: \1 value2: \2').

2.2.6 Replacing multiple items

A simple way to perform multiple replacements using a regular expression is to use the

re.subn () function. Here is an example:

trees')
Out[81]: ('there are *** birds sitting in *** trees', 2)

In [81]: re.subn(r'\d+', '"***' 'there are 203 birds sitting in 2

For more complex replacements, use a function instead of a constant replacement string:

import re

def repl_func (mo) :
sl = mo.group (1)
s2 = '"*' * len(sl)
return s2

def test () :
pat = r' (\d+)"'
in_str = 'there are 2034 birds in 21 trees'
out_str, count = re.subn (pat, repl_func, in_str)
print 'in: "%s"' % in_str
print 'out: "%s"' % out_str
print 'count: %d' % count

test ()

And when we run the above, it produces:

in: "there are 2034 birds in 21 trees"
out: "there are **** birds in ** trees"
count: 2

Notes:

e The replacement function receives one argument, a match object.

e The re.subn () function returns a tuple containing two values: (1) the string

after replacements and (2) the number of replacements performed.

Page 94

www.EngineeringBooksPdf.com

A Python Book

Here is an even more complex example -- You can locate sub-strings (slices) of a match
and replace them:

import sys, re

pat = re.compile('aa([0-9]*)bb([0-9]*)cc")
while 1:
line = raw_input ('Enter a line ("g" to quit): ")
if line == 'gq':
break
mo = pat.search(line)
if mo:

valuel, value2 = mo.group(l, 2)

startl = mo.start (1)

endl = mo.end(1l)

start2 = mo.start (2)

end?2 = mo.end(2)

print 'valuel: %s startl: %d endl: %d' % (valuel, startl,

endl)

print 'value2: %s start2: %d end2: %d' % (value2, start2,
end?2)

repll = raw_input ('Enter replacement #1: ')

repl2 = raw_input ('Enter replacement #2: ')

newline = (line[:startl] + repll + line[endl:start2] +

repl2 + line[end2:])
print 'newline: %s' % newline
else:

print 'no match'

Explanation:

e Alternatively, use "mo.span(1)" instead of "mo.start(1)" and "mo.end(1)" in order
to get the start and end of a sub-match in a single operation. "mo.span(1)"returns a
tuple: (start, end).

e Put together a new string with string concatenation from pieces of the original
string and replacement values. You can use string slices to get the sub-strings of
the original string. In our case, the following gets the start of the string, adds the
first replacement, adds the middle of the original string, adds the second
replacement, and finally, adds the last part of the original string:

newline = line[:startl] + repll + line[endl:start2] +
repl2 + line[end2:]

You can also use the sub function or method to do substitutions. Here is an example:

import sys, re

pat = re.compile('[0-9]+")

print 'Replacing decimal digits.'

Page 95

www.EngineeringBooksPdf.com

A Python Book

while 1:
target = raw_input ('Enter a target line ("g" to quit): ")
if target == 'gq':
break
repl = raw_input ('Enter a replacement: ')

result = pat.sub(repl, target)

] [

(
print 'result: %$s' % result

Here is another example of the use of a function to insert calculated replacements.

import sys, re, string
pat = re.compile('[a-m]+")

def replacer (mo) :
return string.upper (mo.group (0))

print 'Upper-casing a-m.'
while 1:
target = raw_input ('Enter a target line ("g" to quit): ")
if target == 'gq':
break
result = pat.sub(replacer, target)
print 'result: %$s' % result

Notes:

e If the replacement argument to sub is a function, that function must take one
argument, a match object, and must return the modified (or replacement) value.
The matched sub-string will be replaced by the value returned by this function.
e In our case, the function replacer converts the matched value to upper case.
This is also a convenient use for a lambda instead of a named function, for example:

import sys, re, string
pat = re.compile('[a-m]+")

print 'Upper-casing a-m.'

while 1:
target = raw_input ('Enter a target line ("g" to quit): ')
if target == 'q':
break

result = pat.sub/(
lambda mo: string.upper (mo.group(0)),
target)

print 'result: %$s' % result

2.3 lterator Objects

Note 1: You will need a sufficiently recent version of Python in order to use iterators and
generators. I believe that they were introduced in Python 2.2.

Page 96

www.EngineeringBooksPdf.com

A Python Book

Note 2: The iterator protocol has changed slightly in Python version 3.0.

Goals for this section:

Learn how to implement a generator function, that is, a function which, when
called, returns an iterator.

Learn how to implement a class containing a generator method, that is, a method
which, when called, returns an iterator.

Learn the iterator protocol, specifically what methods an iterator must support and
what those methods must do.

Learn how to implement an iterator class, that is, a class whose instances are
iterator objects.

Learn how to implement recursive iterator generators, that is, an iterator generator
which recursively produces iterator generators.

Learn that your implementation of an iterator object (an iterator class) can
"refresh" itself and learn at least one way to do this.

Definitions:

Iterator - And iterator is an object that satisfies (implements) the iterator protocol.
Iterator protocol - An object implements the iterator protocol if it implements both
anext () andan__iter__ () method which satisfy these rules: (1) the
__iter__ () method must return the iterator; (2) the next () method should
return the next item to be iterated over and when finished (there are no more
items) should raise the StopIteration exception. The iterator protocol is
described at Iterator Types --
http://docs.python.org/library/stdtypes.html#iterator-types.

Iterator class - A class that implements (satisfies) the iterator protocol. In
particular, the class implements next () and __iter__ () methods as
described above and in Iterator Types --
http://docs.python.org/library/stdtypes.html#iterator-types.

(Iterator) generator function - A function (or method) which, when called, returns
an iterator object, that is, an object that satisfies the iterator protocol. A function
containing a yield statement automatically becomes a generator.

Generator expression - An expression which produces an iterator object.
Generator expressions have a form similar to a list comprehension, but are
enclosed in parentheses rather than square brackets. See example below.

A few additional basic points:

A function that contains a yield statement is a generator function. When called, it
returns an iterator, that is, an object that provides next () and __iter__ ()
methods.

The iterator protocol is described here: Python Standard Library: Iterator Types --
http://docs.python.org/library/stdtypes.html#iterator-types.

Page 97

www.EngineeringBooksPdf.com

A Python Book

e A class that defines both a next () methodanda ___iter () method satisfies
the iterator protocol. So, instances of such a class will be iterators.

e Python provides a variety of ways to produce (implement) iterators. This section
describes a few of those ways. You should also look at the iter () built-in
function, which is described in The Python Standard Library: Built-in Functions:
iter() -- http://docs.python.org/library/functions.html#iter.

e An iterator can be used in an iterator context, for example in a for statement, in a
list comprehension, and in a generator expression. When an iterator is used in an
iterator context, the iterator produces its values.

This section attempts to provide examples that illustrate the generator/iterator pattern.

Why is this important?

e Once mastered, it is a simple, convenient, and powerful programming pattern.

e It has many and pervasive uses.

e It helps to lexically separate the producer code from the consumer code. Doing so
makes it easier to locate problems and to modify or fix code in a way that is
localized and does not have unwanted side-effects.

e Implementing your own iterators (and generators) enables you to define your own
abstract sequences, that is, sequences whose composition are defined by your
computations rather than by their presence in a container. In fact, your iterator can
calculate or retrieve values as each one is requested.

Examples - The remainder of this section provides a set of examples which implement
and use iterators.

2.3.1 Example - A generator function

This function contains a yield statement. Therefore, when we call it, it produces an
iterator:

def generateltems (seq) :
for item in seq:
yield 'item: %s' % item

anlter = generateltems([])
print 'dir(anIter):', dir(anlIter)
anlter = generateltems([111,222,333])
for x in anlter:
print x
anIter = generateltems(['aaa', 'bbb', 'ccc'])
print anIter.next ()
print anlIter.next ()
print anIter.next ()
print anIter.next ()

Running this example produces the following output:

Page 98

www.EngineeringBooksPdf.com

A Python Book

dir (anlIter): ['__class_ ', ' delattr_ ', '_ doc_ ',
'__getattribute_ ',
' hash_ ', ' _init_ ', '__iter_ ', ' _new__ "', '_ reduce_ ',
' _ reduce_ex_ ', '__repr_ ', '__setattr_ ', '__str_ ', 'gi_frame',
'gi_running', 'next']
item: 111
item: 222
item: 333
item: aaa
item: bbb
item: ccc
Traceback (most recent call last):

File "iterator_generator.py", line 14, in ?

print anIter.next ()

StopIteration

Notes and explanation:

e The value returned by the call to the generator (function) is an iterator. It obeys
the iterator protocol. That is, dir (anIter) shows that it has both
__diter_ () and next () methods.

e Because this object is an iterator, we can use a for statement to iterate over the
values returned by the generator.

e We can also get its values by repeatedly calling the next () method, until it
raises the Stoplteration exception. This ability to call the next method enables us
to pass the iterator object around and get values at different locations in our code.

e Once we have obtained all the values from an iterator, it is, in effect, "empty" or
"exhausted". The iterator protocol, in fact, specifies that once an iterator raises the
Stoplteration exception, it should continue to do so. Another way to say this is
that there is no "rewind" operation. But, you can call the the generator function
again to get a "fresh" iterator.

An alternative and perhaps simpler way to create an interator is to use a generator
expression. This can be useful when you already have a collection or iterator to work
with.

Then following example implements a function that returns a generator object. The effect
is to generate the objects in a collection which excluding items in a separte collection:

DATA = [
'lemon’',
'lime',
'grape',
'apple',
'pear’',
'watermelon',
'canteloupe’',
'honeydew',
'orange',

Page 99

www.EngineeringBooksPdf.com

A Python Book

'grapefruit’',

]

def make_producer (collection, excludes):
gen = (item for item in collection if item not in excludes)
return gen

def test():
iterl = make_producer (DATA, ('apple', 'orange', 'honeydew',6))
print '$s' % iterl

for fruit in iterl:
print fruit

test ()

When run, this example produces the following:

$ python workbook063.py

<generator object <genexpr> at 0x7fb3d0flbc80>
lemon

lime

grape

pear

watermelon

canteloupe

grapefruit

Notes:

e A generator expression looks almost like a list comprehension, but is surrounded
by parentheses rather than square brackets. For more on list comprehensions see
section Example - A list comprehension.

e The make_producer function returns the object produced by the generator
expression.

2.3.2 Example - A class containing a generator method

Each time this method is called, it produces a (new) iterator object. This method is
analogous to the iterkeys and itervalues methods in the dictionary built-in object:

#

A class that provides an iterator generator method.
#

class Node:

def _ _init__ (self, name='<noname>', value='<novalue>',
children=None) :
self.name = name
self.value = value
self.children = children

if children is None:
self.children = []

Page 100

www.EngineeringBooksPdf.com

Ru

A Python Book

else:
self.children = children
def set_name (self, name): self.name = name
def get_name(self): return self.name
def set_value (self, value): self.value = value
def get_value(self): return self.value

def iterchildren (self):
for child in self.children:
yield child
#

grandchildren
def walk(self, level=0):
print '$sname: %$s value: %s' % (

for child in self.iterchildren() :
child.walk (level + 1)

#
An function that is the equivalent of the walk () method in
class Node.
#
def walk (node, level=0):
print '%$sname: %$s value: %s' % (
get_filler(level), node.get_name (), node.get_value(),)
for child in node.iterchildren() :
walk (child, level + 1)

def get_filler (level):

return ' ' * Jlevel
def test () :
a7 = Node('gilbert', '777")
a6 = Node('fred', '666"'")
a5 = Node('ellie' '555")
a4 = Node (' danlel' '444")
a3 = Node('carl', '333', [a4, ab5])
a2 = Node('bill', '222', [a6, a7])
al = Node('alice' '111', [a2, a3])

Use the walk method to walk the entire tree.
print 'Using the method:'

al.walk ()

print '=' * 30

Use the walk function to walk the entire tree.
print 'Using the function:'

walk (al)

test ()

get_filler (level), self.get_name (), self.get_value(),

Print information on this node and walk over all children and

)

nning this example produces the following output:

Using the method:
name: alice value: 111

Page 101

www.EngineeringBooksPdf.com

A Python Book

name: bill wvalue: 222
name: fred value: 666
name: gilbert wvalue: 777
name: carl value: 333
name: daniel wvalue: 444
name: ellie wvalue: 555

Using the function:
name: alice wvalue: 111
name: bill wvalue: 222
name: fred wvalue: 666
name: gilbert wvalue: 777
name: carl value: 333
name: daniel value: 444
name: ellie wvalue: 555

Notes and explanation:

e This class contains a method iterchildren which, when called, returns an iterator.

e The yield statement in the method iterchildren makes it into a generator.

e The yield statement returns one item each time it is reached. The next time the
iterator object is "called" it resumes immediately after the yield statement.

e A function may have any number of yield statements.

A for statement will iterate over all the items produced by an iterator object.

e This example shows two ways to use the generator, specifically: (1) the walk
method in the class Node and (2) the walk function. Both call the generator
iterchildren and both do pretty much the same thing.

2.3.3 Example - An iterator class

This class implements the iterator protocol. Therefore, instances of this class are iterators.
The presence of the next () and __iter__ () methods means that this class
implements the iterator protocol and makes instances of this class iterators.

Note that when an iterator is "exhausted" it, normally, cannot be reused to iterate over the
sequence. However, in this example, we provide a refresh method which enables us to
"rewind" and reuse the iterator instance:

#

An iterator class that does *not* use "~ “yield °.

This iterator produces every other item in a sequence.
#

class IteratorExample:
def __init__ (self, seq):
self.seqg = seq
self.idx = 0
def next (self):
self.idx += 1
if self.idx >= len(self.seq):

Page 102

www.EngineeringBooksPdf.com

A Python Book

raise StopIteration
value = self.seqglself.idx]
self.idx += 1
return value
def _ _iter (self):
return self
def refresh(self):
self.idx = 0

def test_iteratorexample () :

a = IteratorExample ('edcba')

for x in a:
print x

Pring !=—=—====== !

a.refresh ()

for x in a:
print x

print '=' * 30

a = IteratorExample ('abcde')

try:
print
print
print
print
print
print a.next ()

except Stoplteration, e:
print 'stopping', e

[N URN VIR
=)
0]
el
s

test_iteratorexample ()

Running this example produces the following output:

stopping

Notes and explanation:

e The next method must keep track of where it is and what item it should produce

next.
e Alert: The iterator protocol has changed slightly in Python 3.0. In particular, the
next () method has been renamed to __next__ (). See: Python Standard

Library: Iterator Types --
http://docs.python.org/3.0/library/stdtypes.html#iterator-types.

Page 103

www.EngineeringBooksPdf.com

A Python Book

2.3.4 Example - An iterator class that uses yield

There may be times when the next method is easier and more straight-forward to

implement using yield. If so, then this class might serve as an model. If you do not feel

the need to do this, then you should ignore this example:

#

An iterator class that uses "~ “yield ".

This iterator produces every other item in a sequence.
#

class YieldIteratorExample:
def __init__ (self, seq):
self.seqg = seq

self.iterator = self. next ()
self.next = self.iterator.next
def _next (self):
flag = 0
for x in self.seq:
if flag:
flag = 0
yield x
else:
flag = 1

def _ iter_ (self):
return self.iterator

def refresh(self):
self.iterator = self._next ()
self.next = self.iterator.next

def test_yielditeratorexample () :

a = YieldIteratorExample ('edcba')

for x in a:
print x

Print !=—=—======

a.refresh ()

for x in a:
print x

print '=' * 30

a = YieldIteratorExample ('abcde')

try:
print
print
print
print
print
print a.next ()

except Stoplteration, e:
print 'stopping', e

SRR
=
(0]
el
ar

test_yielditeratorexample ()

Running this example produces the following output:

Page 104

www.EngineeringBooksPdf.com

A Python Book

stopping

Notes and explanation:

Because the _next method uses yield, calling it (actually, calling the iterator
object it produces) in an iterator context causes it to be "resumed" immediately
after the yield statement. This reduces bookkeeping a bit.

However, with this style, we must explicitly produce an iterator. We do this by
calling the _next method, which contains a yield statement, and is therefore a
generator. The following code in our constructor (__init__) completes the
set-up of our class as an iterator class:

self.iterator = self._next ()
self.next = self.iterator.next

Remember that we need both __iter () and next () methods in
YieldIteratorExample to satisfy the iterator protocol. The __iter__ ()
method is already there and the above code in the constructor creates the next ()
method.

2.3.5 Example - A list comprehension

A list comprehension looks a bit like an iterator, but it produces a list. See: The Python
Language Reference: List displays --
http://docs.python.org/reference/expressions.html#list-displays for more on list
comprehensions.

Here is an example:

[4]: def f(x):
g return x * 3

. listl

In [5] = [11, 22, 33]

In [6]: 1list2 = [f(x) for x in listl]
In [7]: print list2

[33, 66, 99]

2.3.6 Example - A generator expression

A generator expression looks quite similar to a list comprehension, but is enclosed in

Page 105

www.EngineeringBooksPdf.com

A Python Book

parentheses rather than square brackets. Unlike a list comprehension, a generator
expression does not produce a list; it produces an generator object. A generator object is
an iterator.

For more on generator expressions, see The Python Language Reference: Generator
expressions -- http://docs.python.org/reference/expressions.html#generator-expressions.

The following example uses a generator expression to produce an iterator:

mylist = range (10)

def f(x):
return x*3

genexpr = (f(x) for x in mylist)

for x in genexpr:
print x

Notes and explanation:

e The generator expression (f(x) for x in mylist) produces an iterator object.
e Notice that we can use the iterator object later in our code, can save it in a data
structure, and can pass it to a function.

2.4 Unit Tests

Unit test and the Python unit test framework provide a convenient way to define and run
tests that ensure that a Python application produces specified results.

This section, while it will not attempt to explain everything about the unit test framework,
will provide examples of several straight-forward ways to construct and run tests.

Some assumptions:

e We are going to develop a software project incrementally. We will not implement
and release all at once. Therefore, each time we add to our existing code base, we
need a way to verify that our additions (and fixes) have not caused new problems
in old code.

e Adding new code to existing code will cause problems. We need to be able to
check/test for those problems at each step.

e As we add code, we need to be able to add tests for that new code, too.

2.4.1 Defining unit tests

2.4.1.1 Create a test class.

In the test class, implement a number of methods to perform your tests. Name your test

Page 106

www.EngineeringBooksPdf.com

A Python Book

methods with the prefix "test". Here is an example:

import unittest

class MyTest (unittest.TestCase) :
def test_one(self):
some test code
pass
def test_two(self):
some test code
pass

Create a test harness. Here is an example:

import unittest

make the test suite.

def suite() :
loader = unittest.TestLoader ()
testsuite = loader.loadTestsFromTestCase (MyTest)
return testsuite

Make the test suite; run the tests.

def test () :
testsuite = suite()
runner = unittest.TextTestRunner (sys.stdout, verbosity=2)
result = runner.run (testsuite)

Here is a more complete example:

import sys, StringIO, string
import unittest
import webserv_example_heavy_sub

A comparison function for case-insenstive sorting.
def mycmpfunc (argl, arg2):
return cmp(string.lower (argl), string.lower (arg2))

class XmlTest (unittest.TestCase) :

def test_import_exportl (self) :
inFile = file('testl_in.xml', 'r'")
inContent = inFile.read()
inFile.close ()
doc = webserv_example_heavy_sub.parseString (inContent)
outFile = StringIO.StringIO ()
outFile.write ('<?xml version="1.0" ?>\n")
doc.export (outFile, O0)
outContent = outFile.getvalue ()
outFile.close ()
self.failUnless (inContent == outContent)

make the test suite.
def suite():

Page 107

www.EngineeringBooksPdf.com

Ru

A Python Book

loader = unittest.TestLoader ()

Change the test method prefix: test —--> trial.

#loader.testMethodPrefix = 'trial'

Change the comparison function that determines the order of
EESES .

#loader.sortTestMethodsUsing = mycmpfunc

testsuite = loader.loadTestsFromTestCase (XmlTest)

return testsuite

Make the test suite; run the tests.
def test_main() :

testsuite = suite()
runner = unittest.TextTestRunner (sys.stdout, verbosity=2)
result = runner.run(testsuite)

if __ name_ == "_ _main__ ":

test_main ()

nning the above script produces the following output:

test_import_export (__main__ .XmlTest) ... ok

Ran 1 test in 0.035s

OK

A few notes on this example:

e This example tests the ability to parse an xml document test]l_in.xml and export
that document back to XML. The test succeeds if the input XML document and
the exported XML document are the same.

e The code which is being tested parses an XML document returned by a request to
Amazon Web services. You can learn more about Amazon Web services at:
http://www.amazon.com/webservices. This code was generated from an XML
Schema document by generateDS.py. So we are in effect, testing generateDS.py.
You can find generateDS.py at:
http://http://www.davekuhlman.org/#generateds-py.

e Testing for success/failure and reporting failures -- Use the methods listed at
http://www.python.org/doc/current/lib/testcase-objects.html to test for and report
success and failure. In our example, we used "self.failUnless(inContent ==
outContent)" to ensure that the content we parsed and the content that we
exported were the same.

e Add additional tests by adding methods whose names have the prefix "test". If
you prefer a different prefix for tests names, add something like the following to
the above script:

‘ loader.testMethodPrefix = 'trial'

Page 108

www.EngineeringBooksPdf.com

A Python Book

e By default, the tests are run in the order of their names sorted by the cmp
function. So, if needed, you can control the order of execution of tests by
selecting their names, for example, using names like test_1_checkderef,
test_2_checkcalc, etc. Or, you can change the comparison function by adding
something like the following to the above script:

‘ loader.sortTestMethodsUsing = mycmpfunc

As a bit of motivation for creating and using unit tests, while developing this example, I
discovered several errors (or maybe "special features") in generateDS.py.

2.5 Extending and embedding Python

2.5.1 Introduction and concepts
Extending vs. embedding -- They are different but related:

e Extending Python means to implement an extension module or an extension type.
An extension module creates a new Python module which is implemented in
C/C++. From Python code, an extension module appears to be just like a module
implemented in Python code. An extension type creates a new Python (built-in)
type which is implemented in C/C++. From Python code, an extension type
appears to be just like a built-in type.

e Embedding Python, by contrast, is to put the Python interpreter within an
application (i.e. link it in) so that the application can run Python scripts. The
scripts can be executed or triggered in a variety of ways, e.g. they can be bound to
keys on the keyboard or to menu items, they can be triggered by external events,
etc. Usually, in order to make the embedded Python interpreter useful, Python is
also extended with functions from the embedding application, so that the scripts
can call functions that are implemented by the embedding C/C++ application.

Documentation -- The two important sources for information about extending and
embedding are the following:

e Extending and Embedding the Python Interpreter --
http://www.python.org/doc/current/ext/ext.html
e Python/C API Reference Manual --
http://www.python.org/doc/current/api/api.html
Types of extensions:

e Extension modules -- From the Python side, it appears to be a Python module.
Usually it exports functions.

e Extension types -- Used to implement a new Python data type.

e Extension classes -- From the Python side, it appears to be a class.

Page 109

www.EngineeringBooksPdf.com

A Python Book

Tools -- There are several tools that support the development of Python extensions:

e SWIG -- Learn about SWIG at: http://www.swig.org

e Pyrex -- Learn about Pyrex at:
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/

e There is also Cython, which seems to be an advanced version of, or at least an
alternative to Pyrex. See: Cython - C Extensions for Python --
http://www.cython.org/

2.5.2 Extension modules
Writing an extension module by hand -- What to do:

e Create the "init" function -- The name of this function must be "init" followed by
the name of the module. Every extension module must have such a function.
e Create the function table -- This table maps function names (referenced from
Python code) to function pointers (implemented in C/C++).
e Implement each wrapper function.
Implementing a wrapper function -- What to do:

1. Capture the arguments with PyArg_ParseTuple. The format string specifies how
arguments are to be converted and captured. See 1.7 Extracting Parameters in
Extension Functions. Here are some of the most commonly used types:

o Use"i","s", "f", etc to convert and capture simple types such as integers,
strings, floats, etc.

o Use "O" to get a pointer to Python "complex" types such as lists, tuples,
dictionaries, etc.

o Use items in parentheses to capture and unpack sequences (e.g. lists and
tuples) of fixed length. Example:

if (!PyArg_ParseTuple (args, "(ii) (ii)", &x, &y,
&width, &height))

{
return NULL;

b/ AE *)

A sample call might be:
lowerLeft = (x1, yl)
extent = (widthl, heightl)

scan (lowerLeft, extent)

o Use ":aName" (colon) at the end of the format string to provide a function
name for error messages. Example:

if (!'PyArg_ParseTuple (args, "O:setContentHandler",
&pythonInstance))
{

Page 110

www.EngineeringBooksPdf.com

A Python Book

return NULL;
b/ LE Y

o Use ";an error message" (semicolon) at the end of the format string to provide
a string that replaces the default error message.

o Docs are available at: http://www.python.org/doc/current/ext/parseTuple.html.

Write the logic.

Handle errors and exceptions -- You will need to understand how to (1) clearing

errors and exceptions and (2) Raise errors (exceptions).

o Many functions in the Python C API raise exceptions. You will need to check
for and clear these exceptions. Here is an example:

char * message;
int messageNo;

message = NULL;

messageNo = -1;

/* Is the argument a string?

%)

if (! PyArg_ParseTuple (args, "s", &message))

{
/* It's not a string. Clear the error.
* Then try to get a message number (an

integer) .
*/
PyErr_Clear();
if (! PyArg_ParseTuple(args, "i", &messageNo))

{

(@)
@)
(@)

o You can also raise exceptions in your C code that can be caught (in a
"try:except:" block) back in the calling Python code. Here is an example:

if (n == 0)
{
PyErr_SetString (PyExc_ValueError, "Value must
not be zero");
return NULL;
}

See Include/pyerrors.h in the Python source distribution for more
exception/error types.

o And, you can test whether a function in the Python C API that you have called
has raised an exception. For example:

if (PyErr_ Occurred())

{
/* An exception was raised.
* Do something about it.

Page 111

www.EngineeringBooksPdf.com

A Python Book

*/
o
o
o

For more documentation on errors and exceptions, see:
http://www.python.org/doc/current/api/exceptionHandling.html.

4. Create and return a value:

o For each built-in Python type there is a set of API functions to create and

manipulate it. See the "Python/C API Reference Manual" for a description of
these functions. For example, see:
http://www.python.org/doc/current/api/intObjects.html
http://www.python.org/doc/current/api/stringObjects.html
http://www.python.org/doc/current/api/tupleObjects.html
http://www.python.org/doc/current/api/listObjects.html
http://www.python.org/doc/current/api/dictObjects.html

Etc.

The reference count -- You will need to follow Python's rules for reference
counting that Python uses to garbage collect objects. You can learn about
these rules at http://www.python.org/doc/current/ext/refcounts.html. You will
not want Python to garbage collect objects that you create too early or too late.
With respect to Python objects created with the above functions, these new
objects are owned and may be passed back to Python code. However, there
are situations where your C/C++ code will not automatically own a reference,
for example when you extract an object from a container (a list, tuple,
dictionary, etc). In these cases you should increment the reference count with
Py_INCREF.

2.5.3 SWIG

Note: Our discussion and examples are for SWIG version 1.3

SWIG will often enable you to generate wrappers for functions in an existing C function
library. SWIG does not understand everything in C header files. But it does a fairly
impressive job. You should try it first before resorting to the hard work of writing
wrappers by hand.

More information on SWIG is at http://www.swig.org.

Here are some steps that you can follow:

1.

Create an interface file -- Even when you are wrapping functions defined in an
existing header file, creating an interface file is a good idea. Include your existing
header file into it, then add whatever else you need. Here is an extremely simple
example of a SWIG interface file:

Page 112

www.EngineeringBooksPdf.com

A Python Book

$module MyLibrary
%1
#include "MyLibrary.h"

%}

$include "MyLibrary.h"

Comments:

o The "%{" and "%}" brackets are directives to SWIG. They say: "Add the code
between these brackets to the generated wrapper file without processing it.

o The "%include" statement says: "Copy the file into the interface file here. In
effect, you are asking SWIG to generate wrappers for all the functions in this
header file. If you want wrappers for only some of the functions in a header
file, then copy or reproduce function declarations for the desired functions
here. An example:

$module MyLibrary

5 {
#include "MyLibrary.h"

5}

int calcArea(int width, int height);
int calcVolume (int radius);

This example will generate wrappers for only two functions.
o You can find more information about the directives that are used in SWIG
interface files in the SWIG User Manual, in particular at:
m http://www.swig.org/Doc1.3/Preprocessor.html
m http://www.swig.org/Doc1.3/Python.html
2. Generate the wrappers:

‘ swig —python MyLibrary.i

3. Compile and link the library. On Linux, you can use something like the following:

gcc —-c MyLibrary.c

gcc —c —-I/usr/local/include/python2.3 MyLibrary_wrap.c
gcc -shared MyLibrary.o MyLibrary_wrap.o -o
_MyLibrary.so

Note that we produce a shared library whose name is the module name prefixed
with an underscore. SWIG also generates a .py file, without the leading
underscore, which we will import from our Python code and which, in turn,
imports the shared library.

4. Use the extension module in your python code:

Python 2.3bl (#1, Apr 25 2003, 20:36:09)
[GCC 2.95.4 20011002 (Debian prerelease)] on linux2

Page 113

www.EngineeringBooksPdf.com

A Python Book

Type "help", "copyright", "credits" or
more information.

>>> import MyLibrary

>>> MyLibrary.calcArea (4.0, 5.0)

20.0

"license" for

Here is a makefile that will execute swig to generate wrappers, then compile and link the

extension.
CFLAGS = -I/usr/local/include/python2.3
all: _MyLibrary.so
_MyLibrary.so: MyLibrary.o MyLibrary_wrap.o
gcc -shared MyLibrary.o MyLibrary_wrap.o -o _MyLibrary.so
MyLibrary.o: MyLibrary.c
gcc -¢c MyLibrary.c -o MyLibrary.o
MyLibrary_wrap.o: MyLibrary_wrap.c
gcc -¢ ${CFLAGS} MyLibrary_wrap.c -o MyLibrary_wrap.o
MyLibrary_wrap.c: MyLibrary.i
swig -python MyLibrary.i
clean:
rm -f MyLibrary.py MyLibrary.o MyLibrary_wrap.c
MyLibrary_wrap.o _MyLibrary.so

Here is an example of running this makefile:

$ make —-f MyLibrary makefile clean

rm -f MyLibrary.py MyLibrary.o MyLibrary_wrap.c \
MyLibrary_wrap.o _MyLibrary.so

S make —-f MyLibrary_makefile

gcc —-c MyLibrary.c -o MyLibrary.o

swig —-python MyLibrary.i

MyLibrary_wrap.o

gcc —c —-I/usr/local/include/python2.3 MyLibrary_wrap.c -o

gcc —-shared MyLibrary.o MyLibrary_wrap.o -o _MyLibrary.so

And, here are C source files that can be used in our example.

MyLibrary.h:

/* MyLibrary.h
=4

Page 114

www.EngineeringBooksPdf.com

A Python Book

float calcArea(float width, float height);
float calcVolume (float radius);

int getVersion();

int getMode () ;

MyLibrary.c:

/* MyLibrary.c
*/

float calcArea(float width, float height)

{
return (width * height);

}

float calcVolume (float radius)

{
return (3.14 * radius * radius);

}

int getVersion ()

{

return 123;

}

int getMode ()
{

return 1;

}

2.5.4 Pyrex

Pyrex is a useful tool for writing Python extensions. Because the Pyrex language is
similar to Python, writing extensions in Pyrex is easier than doing so in C. Cython
appears to be the a newer version of Pyrex.

More information is on Pyrex and Cython is at:

e Pyrex -- http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
e Cython - C Extensions for Python -- http://www.cython.org/
Here is a simple function definition in Pyrex:

python_201_pyrex_string.pyx
import string
def formatString(object sl, object s2):

sl = string.strip(sl)
s2 = string.strip(s2)

Page 115

www.EngineeringBooksPdf.com

A Python Book

s3 = '<<%s||%s>>"'" % (sl, s2)
s4 = g3 * 4
return s4

And, here is a make file:

CFLAGS = —-DNDEBUG -03 -Wall -Wstrict-prototypes —fPIC \
-I/usr/local/include/python2.3

all: python_201_pyrex_string.so

python_201_pyrex_string.so: python_201_pyrex_ string.o
gcc —-shared python_201_pyrex_string.o -o
python 201 _pyrex_string.so

python_201_pyrex_string.o: python_201_pyrex_string.c
gcc —-c ${CFLAGS} python_201_pyrex_string.c -o
python_201_pyrex_string.o

python_201_pyrex_string.c: python_201_pyrex_string.pyx
pyrexc python_201_pyrex_string.pyx

clean:
rm —f python_201_pyrex_string.so python_201_pyrex_string.o \
python_201_pyrex_string.c

Here is another example. In this one, one function in the .pyx file calls another. Here is
the implementation file:

python_201_pyrex_primes.pyx

def showPrimes (int kmax) :
plist = primes (kmax)
for p in plist:
print 'prime: %d' % p

cdef primes (int kmax) :
cdef int n, k, 1
cdef int p[1000]
result = []
if kmax > 1000:
kmax = 1000

k =0
n = 2
while k < kmax:
i=20
while i < k and n % p[i] <> O:
i=1i+1
if i == k
plk] = n
k =%k + 1

result.append (n)
n=n+1

Page 116

www.EngineeringBooksPdf.com

A Python Book

‘ return result

And, here is a make file:

#CFLAGS = -DNDEBUG -g -O3 -Wall -Wstrict-prototypes -fPIC #
-I/usr/local/include/python2.3 CFLAGS = -DNDEBUG
-I/ust/local/include/python2.3

all: python_201_pyrex_primes.so

python_201_pyrex_primes.so: python_201_pyrex_primes.o

gcc -shared python_201_pyrex_primes.o -o python_201_pyrex_primes.so
python_201_pyrex_primes.o: python_201_pyrex_primes.c

gcc -¢ ${CFLAGS} python_201_pyrex_primes.c -o python_201_pyrex_primes.o
python_201_pyrex_primes.c: python_201_pyrex_primes.pyx

pyrexc python_201_pyrex_primes.pyx
clean:

rm -f python_201_pyrex_primes.so python_201_pyrex_primes.o

python_201_pyrex_primes.c

Here is the output from running the makefile:

$ make —-f python_ 201 _pyrex_makeprimes clean

rm —f python_201_pyrex_primes.so python_201_pyrex_primes.o \
python_201_pyrex_primes.c

$ make —-f python_201_pyrex_makeprimes

pyrexc python_201_pyrex_primes.pyx

gcc —c -DNDEBUG -I/usr/local/include/python2.3

python_201_pyrex_primes.c -o python_201_pyrex_primes.o

gcc -shared python_201_pyrex_primes.o -o python_201_pyrex_primes.so

Here is an interactive example of its use:

$ python

Python 2.3bl (#1, Apr 25 2003, 20:36:09)

[GCC 2.95.4 20011002 (Debian prerelease)] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>> import python_201_pyrex_primes

>>> dir (python_201_pyrex_primes)

['__builtins_ ', '__doc_ ', '__file ', '__name__ ', 'showPrimes']
>>> python_201_pyrex_primes.showPrimes (5)

prime: 2

prime: 3

prime: 5

prime: 7

Page 117

www.EngineeringBooksPdf.com

A Python Book

‘prime: 11

This next example shows how to use Pyrex to implement a new extension type, that is a
new Python built-in type. Notice that the class is declared with the cdef keyword, which
tells Pyrex to generate the C implementation of a type instead of a class.

Here is the implementation file:

python_201_pyrex_clsprimes.pyx

"""An implementation of primes handling class
for a demonstration of Pyrex.

mmwn

cdef class Primes:
"""A class containing functions for
handling primes.

mmwn

def showPrimes (self, int kmax) :
"""Show a range of primes.
Use the method primes () to generate the primes.
mwn
plist = self.primes (kmax)
for p in plist:
print 'prime: %d' % p

def primes(self, int kmax):
"""Generate the primes in the range 0 - kmax.
cdef int n, k, 1
cdef int p[1000]
result = []
if kmax > 1000:
kmax = 1000

k =0
n = 2
while k < kmax:
i=20
while i < k and n % p[i] <> O:
i =1+ 1
if i == k:
plk] = n
k =%k + 1

result.append(n)
n=n-+1
return result

And, here is a make file:

CFLAGS = —-DNDEBUG -I/usr/local/include/python2.3

all: python_ 201_pyrex_clsprimes.so

Page 118

www.EngineeringBooksPdf.com

A Python Book

python_201_pyrex_clsprimes.so: python_201_pyrex_clsprimes.o
gcc -shared python_201_pyrex_clsprimes.o -o
python_ 201_pyrex_clsprimes.so

python 201_pyrex_clsprimes.o: python_ 201_pyrex_ clsprimes.c
gcc —c ${CFLAGS} python_201_pyrex_clsprimes.c -o
python_201_pyrex_clsprimes.o

python_201_pyrex_clsprimes.c: python_201_pyrex_clsprimes.pyx
pyrexc python_201_pyrex_clsprimes.pyx

clean:
rm —f python_201_pyrex_clsprimes.so
python_201_pyrex_clsprimes.o \
python_201_pyrex_clsprimes.c

Here is output from running the makefile:

S make —-f python_201_pyrex_makeclsprimes clean

rm —-f python_201_pyrex_clsprimes.so python_201_pyrex_clsprimes.o \
python 201 _pyrex_clsprimes.c

$ make —-f python_201_pyrex_makeclsprimes

pyrexc python_ 201 _pyrex_clsprimes.pyx

gcc —c —-DNDEBUG -I/usr/local/include/python2.3

python_201_pyrex_clsprimes.c -o python_201_pyrex_clsprimes.o

gcc —-shared python_201_pyrex_clsprimes.o -o

python_201_pyrex_clsprimes.so

And here is an interactive example of its use:

$ python

Python 2.3bl (#1, Apr 25 2003, 20:36:09)

[GCC 2.95.4 20011002 (Debian prerelease)] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>> import python_201_pyrex_clsprimes

>>> dir (python_201_pyrex_clsprimes)

['Primes', '_ builtins_ ', '__doc__', '_ file ', '_ _name_ ']
>>> primes = python_201_pyrex_clsprimes.Primes ()

>>> dir (primes)

['__class__ ', '__delattr__', '__doc___', '_ _getattribute_ ',

' _hash__ "',

' init__ ', '_new_ "', '__reduce__', '_ _reduce_ex__ ', '__repr_ ',
' __setattr_ ', '_str_ ', 'primes', 'showPrimes']

>>> primes.showPrimes (4)
prime: 2
prime: 3
prime: 5
prime: 7

Documentation -- Also notice that Pyrex preserves the documentation for the module, the

class, and the methods in the class. You can show this documentation with pydoc, as

Page 119

www.EngineeringBooksPdf.com

A Python Book

follows:

‘$ pydoc python_201_pyrex_clsprimes

Or, in Python interactive mode, use:

S python

Python 2.3bl (#1, Apr 25 2003, 20:36:09)

[GCC 2.95.4 20011002 (Debian prerelease)] on linux2

Type "help", "copyright", "credits" or "license" for more
information.

>>> import python_ 201 _pyrex_clsprimes

>>> help (python_201_pyrex clsprimes)

2.5.5 SWIG vs. Pyrex
Choose SWIG when:

e You already have an existing C or C++ implementation of the code you want to
call from Python. In this case you want SWIG to generate the wrappers. But note
that Cython promises to enable you to quickly wrap and call functions
implemented in C.

e You want to write the implementation in C or C++ by hand. Perhaps, because you
think you can do so quickly, for example, or because you believe that you can
make it highly optimized. Then, you want to be able to generate the Python
(extension) wrappers for it quickly.

Choose Pyrex when:

e You do not have a C/C++ implementation and you want an easier way to write
that C implementation. Writing Pyrex code, which is a lot like Python, is easier
than writing C or C++ code by hand).

e You start to write the implementation in C, then find that it requires lots of calls to
the Python C API, and you want to avoid having to learn how to do that.

2.5.6 Cython

Here is a simple example that uses Cython to wrap a function implemented in C.

First the C header file:

/* test_c_lib.h */

int calculate(int width, int height);

And, the C implementation file:

/* test_c_lib.c */

Page 120

www.EngineeringBooksPdf.com

A Python Book

#include "test_c_lib.h"

int calculate(int width, int height)
{
int result;
result = width * height * 3;
return result;

}

Here is a Cython file that calls our C function:

test_c.pyx

Declare the external C function.
cdef extern from "test_c_lib.h":
int calculate(int width, int height)

def test(w, h):
Call the external C function.
result = calculate(w, h)
print 'result from calculate: %d' % result

We can compile our code using this script (on Linux):

#!/bin/bash -x

cython test_c.pyx

gcc —c¢ —fPIC -I/usr/local/include/python2.6 -o test_c.o test_c.c
gcc —c —fPIC -I/usr/local/include/python2.6 -o test_c_lib.o
test_c_lib.c

gcc —-shared —-fPIC -I/usr/local/include/python2.6 -o test_c.so
test_c.o test_c_1lib.o

Here is a small Python file that uses the wrapper that we wrote in Cython:

run_test_c.py

import test_c

def test () :
test_c.test (4, 5)
test_c.test (12, 15)

if _ _name_ == '_ main_ ':
test ()

And, when we run it, we see the following:

$ python run_test_c.py
result from calculate: 60
result from calculate: 540

Page 121

www.EngineeringBooksPdf.com

A Python Book

2.5.7 Extension types
The goal -- A new built-in data type for Python.

Existing examples -- Objects/listobject.c, Objects/stringobject.c, Objects/dictobject.c, etc
in the Python source code distribution.

In older versions of the Python source code distribution, a template for the C code was
provided in Objects/xxobject.c. Objects/xxobject.c is no longer included in the Python
source code distribution. However:

e The discussion and examples for creating extension types have been expanded.
See: Extending and Embedding the Python Interpreter, 2. Defining New Types --
http://docs.python.org/extending/newtypes.html.

e In the Tools/framer directory of the Python source code distribution there is an
application that will generate a skeleton for an extension type from a specification
object written in Python. Run Tools/framer/example.py to see it in action.

And, you can use Pyrex to generate a new built-in type. To do so, implement a
Python/Pyrex class and declare the class with the Pyrex keyword cdef. In fact, you may
want to use Pyrex to generate a minimal extension type, and then edit that generated code
to insert and add functionality by hand. See the Pyrex section for an example.

Pyrex also goes some way toward giving you access to (existing) C structs and functions
from Python.

2.5.8 Extension classes
Extension classes the easy way -- SWIG shadow classes.

Start with an implementation of a C++ class and its header file.

Use the following SWIG flags:

‘swig —c++ —-python mymodule.i

More information is available with the SWIG documentation at:
http://www.swig.org/Doc1.3/Python.html.

Extension classes the Pyrex way -- An alternatie is to use Pyrex to compile a class
definition that does not have the cdef keyword. Using cdef on the class tells Pyrex to
generate an extension type instead of a class. You will have to determine whether you
want an extension class or an extension type.

2.6 Parsing

Python is an excellent language for text analysis.

Page 122

www.EngineeringBooksPdf.com

A Python Book

In some cases, simply splitting lines of text into words will be enough. In these cases use
string.split().

In other cases, regular expressions may be able to do the parsing you need. If so, see the
section on regular expressions in this document.

However, in some cases, more complex analysis of input text is required. This section
describes some of the ways that Python can help you with this complex parsing and
analysis.

2.6.1 Special purpose parsers

There are a number of special purpose parsers which you will find in the Python standard
library:

e ConfigParser parser - Configuration file parser --
http://docs.python.org/library/configparser.html
e getopt -- Parser for command line options --
http://docs.python.org/library/getopt.html
e optparse -- More powerful command line option parser --
http://docs.python.org/library/optparse.html
e urlparse -- Parse URLSs into components --
http://docs.python.org/library/urlparse.html
e csv -- CSV (comma separated values) File Reading and Writing --
http://docs.python.org/library/csv.html#module-csv
e os.path - Common pathname manipulations --
http://docs.python.org/library/os.path.html
XML parsers and XML tools -- There is lots of support for parsing and processing XML
in Python. Here are a few places to look for support:

e The Python standard library -- Structured Markup Processing Tools --
http://docs.python.org/library/markup.html.

e In particular, you may be interested in xml.dom.minidom - Lightweight DOM
implementation -- http://docs.python.org/library/xml.dom.minidom.html.

e ElementTree -- You can think of ElementTree as an enhanced DOM (document
object model). Many find it easier to use than minidom. ElementTree is in the
Python standard library, and documentation is here: ElementTree Overview --
http://effbot.org/zone/element-index.htm.

e Lxml mimics the ElementTree API, but has additional capabilities. Find out about
Lxml at Ixml -- http://codespeak.net/Ixml/index.html -- Note that Ixml also has
support for XPath and XSLT.

e Dave's support for Python and XML -- http://www.rexx.com/~dkuhlman.

Page 123

www.EngineeringBooksPdf.com

A Python Book

2.6.2 Writing a recursive descent parser by hand

For simple grammars, this is not so hard.

You will need to implement:

As

e A recognizer method or function for each production rule in your grammar. Each
recognizer method begins looking at the current token, then consumes as many
tokens as needed to recognize it's own production rule. It calls the recognizer
functions for any non-terminals on its right-hand side.

e A tokenizer -- Something that will enable each recognizer function to get tokens,
one by one. There are a variety of ways to do this, e.g. (1) a function that
produces a list of tokens from which recognizers can pop tokens; (2) a generator
whose next method returns the next token; etc.

an example, we'll implement a recursive descent parser written in Python for the

following grammer:

Prog ::= Command | Command Prog

Command ::= Func_call

Func_call ::= Term ' (' Func_call_list '")'

Func_call_list ::= Func_call | Func_call ',' Func_call_list
Term = <word>

re is an implementation of a recursive descent parser for the above grammar:

#!/usr/bin/env python

mmn

A recursive descent parser example.

Usage:

python rparser.py [options] <inputfile>
Options:

-h, —--help Display this help message.
Example:

python rparser.py myfile.txt

The grammar:
Prog ::= Command | Command Prog
Command ::= Func_call
Func_call ::= Term ' (' Func_call_list '")'
Func_call_list ::= Func_call | Func_call ',' Func_call_list

Term = <word>
mmwn

import sys
import string
import types
import getopt

Page 124

www.EngineeringBooksPdf.com

A Python Book

#

To use the IPython interactive shell to inspect your running
application, uncomment the following lines:

#

from IPython.Shell import IPShellEmbed
ipshell = IPShellEmbed((),

#4 banner = '>>>>>>>> Into IPython >>>>>>>>"',

exit_msg = '<<<<<<<< Out of IPython <<<<<<<<')

#

Then add the following line at the point in your code where
you want to inspect run-time values:

#

ipshell ('some message to identify where we are')

#

For more information see: http://ipython.scipy.org/moin/

#

#
Constants
#

AST node types
NoneNodeType = 0
ProgNodeType = 1
CommandNodeType = 2
FuncCallNodeType = 3
FuncCallListNodeType = 4
TermNodeType = 5

Token types
NoneTokType = 0

LParTokType = 1
RParTokType = 2
WordTokType = 3
CommaTokType 4

EOFTokType = 5

Dictionary to map node type values to node type names
NodeTypeDict = {
NoneNodeType: 'NoneNodeType',
ProgNodeType: 'ProgNodeType',
CommandNodeType: 'CommandNodeType',
FuncCallNodeType: 'FuncCallNodeType',
FuncCallListNodeType: 'FuncCallListNodeType',
TermNodeType: 'TermNodeType',
}

#
Representation of a node in the AST (abstract syntax tree).
#
class ASTNode:
def _ _init__ (self, nodeType, *args):
self.nodeType = nodeType

Page 125

www.EngineeringBooksPdf.com

A Python Book

self.children = []
for item in args:
self.children.append (item)
def show(self, level):
self.showLevel (level)
print 'Node —-- Type %s' % NodeTypeDict[self.nodeType]
level += 1
for child in self.children:
if isinstance (child, ASTNode) :
child.show (level)
elif type(child) == types.ListType:
for item in child:
item.show (level)
else:
self.showLevel (level)
print 'Child:', child
def showlLevel (self, level):
for idx in range(level) :

print ' "
#
The recursive descent parser class.
Contains the "recognizer" methods, which implement the grammar
rules (above), one recognizer method for each production rule.
#

class ProgParser:
def __init__ (self):
pass

def parseFile(self, infileName) :
self.infileName = infileName
self.tokens = None
self.tokenType = NoneTokType
self.token = "'
self.lineNo = -1
self.infile file(self.infileName, 'r')
self.tokens = genTokens(self.infile)
try:

self.tokenType, self.token, self.lineNo =
self.tokens.next ()
except Stoplteration:
raise RuntimeError, 'Empty file'
result = self.prog_reco ()
self.infile.close()
self.infile = None
return result

def parseStream(self, instream):
self.tokens = genTokens (instream, '<instream>')
try:
self.tokenType, self.token, self.lineNo =
self.tokens.next ()
except Stoplteration:

Page 126

www.EngineeringBooksPdf.com

A Python Book

raise RuntimeError, 'Empty file'
result = self.prog_reco ()
return result

def prog_reco(self):
commandList = []
while 1:
result = self.command_reco ()
if not result:
break
commandList.append (result)
return ASTNode (ProgNodeType, commandList)

def command_reco (self) :

if self.tokenType == EOFTokType:
return None
result = self.func_call reco()

return ASTNode (CommandNodeType, result)

def func_call_reco(self):
if self.tokenType == WordTokType:

term = ASTNode (TermNodeType, self.token)

self.tokenType, self.token, self.lineNo =
self.tokens.next ()

if self.tokenType == LParTokType:

self.tokenType, self.token, self.lineNo =

self.tokens.next ()

result = self.func_call_list_reco()
if result:
if self.tokenType == RParTokType:

self.tokenType, self.token, self.lineNo = \
self.tokens.next ()
return ASTNode (FuncCallNodeType, term,

result)
else:
raise ParseError (self.lineNo, 'missing right
paren')
else:
raise ParseError(self.lineNo, 'bad func call
list"')

else:
raise ParseError(self.lineNo, 'missing left paren')
else:
return None

def func_call_list_reco(self):
terms = []
while 1:
result = self.func_call reco()
if not result:
break
terms.append (result)
if self.tokenType != CommaTokType:

Page 127

www.EngineeringBooksPdf.com

A Python Book

break
self.tokenType, self.token, self.lineNo =
self.tokens.next ()
return ASTNode (FuncCallListNodeType, terms)

#
The parse error exception class.
#
class ParseError (Exception):
def _ _init_ (self, lineNo, msg) :
RuntimeError.__init__ (self, msqg)
self.lineNo = lineNo
self.msg = msg
def getLineNo (self):
return self.lineNo
def getMsg(self) :
return self.msg

def is_word(token) :
for letter in token:
if letter not in string.ascii_letters:
return None
return 1

#
Generate the tokens.
Usage:
gen = genTokens (infile)
tokType, tok, lineNo = gen.next ()
e
def genTokens (infile) :
lineNo = 0
while 1:
lineNo += 1
try:
line = infile.next ()
except:

yield (EOFTokType, None, lineNo)
toks = line.split ()
for tok in toks:
if is_word(tok) :
tokType = WordTokType

elif tok == "'(':

tokType = LParTokType
elif tok == ") "':

tokType = RParTokType
elif tok == "',":

tokType = CommaTokType
yield (tokType, tok, lineNo)

def test (infileName) :
parser = ProgParser ()
#ipshell (' (test) #1\nCtrl-D to exit')

Page 128

www.EngineeringBooksPdf.com

A Python Book

result = None
try:
result = parser.parseFile(infileName)
except ParseError, exp:
sys.stderr.write ('ParseError: (%d) %s\n' % \
(exp.getLineNo (), exp.getMsg()))
if result:
result.show (0)

def usage() :
print ___doc_
sys.exit (1)

def main () :
args = sys.argv[l:]
try:
opts, args = getopt.getopt (args, 'h', ['help'])
except:
usage ()
relink =1
for opt, val in opts:
if opt in ('-h', '—--help'):
usage ()
if len(args) !=
usage ()
inputfile = args|[0]
test (inputfile)

1g

if _ _name_ == '_ _main__ ':
#import pdb; pdb.set_trace()
main ()

Comments and explanation:

e The tokenizer is a Python generator. It returns a Python generator that can
produce "(tokType, tok, lineNo)" tuples. Our tokenizer is so simple-minded that
we have to separate all of our tokens with whitespace. (A little later, we'll see how
to use Plex to overcome this limitation.)

e The parser class (ProgParser) contains the recognizer methods that implement the
production rules. Each of these methods recognizes a syntactic construct defined
by a rule. In our example, these methods have names that end with "_reco".

e We could have, alternatively, implemented our recognizers as global functions,
instead of as methods in a class. However, using a class gives us a place to "hang"
the variables that are needed across methods and saves us from having to use
("evil") global variables.

e A recognizer method recognizes terminals (syntactic elements on the right-hand
side of the grammar rule for which there is no grammar rule) by (1) checking the
token type and the token value, and then (2) calling the tokenizer to get the next
token (because it has consumed a token).

Page 129

www.EngineeringBooksPdf.com

A Python Book

A recognizer method checks for and processes a non-terminal (syntactic elements
on the right-hand side for which there is a grammar rule) by calling the recognizer
method that implements that non-terminal.

If a recognizer method finds a syntax error, it raises an exception of class
ParserError.

Since our example recursive descent parser creates an AST (an abstract syntax
tree), whenever a recognizer method successfully recognizes a syntactic construct,
it creates an instance of class ASTNode to represent it and returns that instance to
its caller. The instance of ASTNode has a node type and contains child nodes
which were constructed by recognizer methods called by this one (i.e. that
represent non-terminals on the right-hand side of a grammar rule).

Each time a recognizer method "consumes a token", it calls the tokenizer to get
the next token (and token type and line number).

The tokenizer returns a token type in addition to the token value. It also returns a
line number for error reporting.

The syntax tree is constructed from instances of class ASTNode.

The ASTNode class has a show method, which walks the AST and produces
output. You can imagine that a similar method could do code generation. And,
you should consider the possibility of writing analogous tree walk methods that
perform tasks such as optimization, annotation of the AST, etc.

And, here is a sample of the data we can apply this parser to:

aaa
bbb
ddd

()
(ccc ())
(eee () , fff (ggg () , hhh () , 1iii ()))

And, if we run the parser on the this input data, we see:

$ python workbook045.py workbook(045.data
Node -- Type ProgNodeType

Node —-- Type CommandNodeType
Node —-- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: aaa
Node —-- Type FuncCallListNodeType
Node —-- Type CommandNodeType
Node —-- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: bbb
Node —-- Type FuncCallListNodeType
Node —-- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: ccc
Node —-- Type FuncCallListNodeType
Node —-- Type CommandNodeType
Node —-- Type FuncCallNodeType
Node -- Type TermNodeType

Page 130

www.EngineeringBooksPdf.com

A Python Book

Child: ddd
Node —-- Type FuncCallListNodeType
Node —-- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: eee
Node —-- Type FuncCallListNodeType
Node —-- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: fff
Node —-- Type FuncCallListNodeType
Node —-- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: ggg
Node —-—- Type FuncCallListNodeType
Node —-- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: hhh
Node —-- Type FuncCallListNodeType
Node —-- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: iii
Node —-- Type FuncCallListNodeType

2.6.3 Creating a lexer/tokenizer with Plex

Lexical analysis -- The tokenizer in our recursive descent parser example was (for
demonstration purposes) overly simple. You can always write more complex tokenizers
by hand. However, for more complex (and real) tokenizers, you may want to use a tool to
build your tokenizer.

In this section we'll describe Plex and use it to produce a tokenizer for our recursive
descent parser.

You can obtain Plex at http://www.cosc.canterbury.ac.nz/~greg/python/Plex/.
In order to use it, you may want to add Plex-1.1.4/Plex to your PYTHONPATH.

Here is a simple example from the Plex tutorial:

#!/usr/bin/env python

mmwn

Sample Plex lexer

Usage:
python plex_example.py inputfile

mmn

import sys
import Plex

Page 131

www.EngineeringBooksPdf.com

A Python Book

def count_lines (scanner, text):
scanner.line_count += 1
print '-' * 60

def test (infileName) :
letter = Plex.Range ("AZaz")

digit = Plex.Range ("09")
name = letter + Plex.Rep(letter | digit)
number = Plex.Repl (digit)
space = Plex.Any (" \t")
endline = Plex.Str('\n"'")
fcomment = Plex.Str('"') + Plex.Rep(Plex.AnyBut('"')) +
Plex.Str('"")
resword = Plex.Str("if", "then", "else", "end")
lexicon = Plex.Lexicon ([
(endline, count_lines),
(resword, 'keyword'),
(name, 'ident'),
(number, 'int'),
(Plex.Any ("+-*/=<>"), 'operator'),
(space, Plex.IGNORE),
(comment, 'comment '),
(Plex.Str('("), 'lpar'),
(Plex.Str (") "), 'rpar'),
comments surrounded by (* and *)
(Plex.Str (" (*"), Plex.Begin ('comment')),
Plex.State ('comment', [
(Plex.Str("*)"), Plex.Begin('")),

(Plex.AnyChar, Plex.IGNORE),
1),
1)

infile = open(infileName, "r")
scanner = Plex.Scanner (lexicon, infile, infileName)
scanner.line_count = 0
while True:

token = scanner.read()

if token[0] 1is None:

break
position = scanner.position ()
posstr = ('(%d, %d)' % (position[1l],
position[2],)).ljust (10)
tokstr = ""$s"' % token[1]

tokstr = tokstr.ljust (20)
print '%s tok: %s tokType: %$s' % (posstr, tokstr, token[O0],)
print 'line_count: %d' % scanner.line_count

def usage() :
print _ doc_
sys.exit (1)

def main() :
args = sys.argv[l:]

Page 132

www.EngineeringBooksPdf.com

A Python Book

if len(args) != 1:
usage ()
infileName = args[0]

test (infileName)

if _ _name_ == '_ main__ ':
#import pdb; pdb.set_trace ()
main ()

Here is a bit of data on which we can use the above lexer:

mass = (height * (* some comment *) width * depth) / density
totalmass = totalmass + mass

And, when we apply the above test program to this data, here is what we see:

S python plex_example.py plex_example.data

(1, 0) tok: "mass" tokType: ident
(1, 5) tok: "=" tokType: operator
(1, 7) tok: " (" tokType: lpar

(1, 8) tok: "height" tokType: ident
(1, 15) tok: "x" tokType: operator
(1, 36) tok: "width" tokType: ident
(1, 42) tok: "*" tokType: operator
(1, 44) tok: "depth" tokType: ident
(1, 49) tok: ")" tokType: rpar

(1, 51) tok: "/" tokType: operator
(1, 53) tok: "density" tokType: ident
(2, 0) tok: "totalmass" tokType: ident
(2, 10) tok: "=" tokType: operator
(2, 12) tok: "totalmass" tokType: ident
(2, 22) tok: "+" tokType: operator
(2, 24) tok: "mass" tokType: ident

line_count: 2

Comments and explanation:

e Create a lexicon from scanning patterns.

e See the Plex tutorial and reference (and below) for more information on how to
construct the patterns that match various tokens.

e Create a scanner with a lexicon, an input file, and an input file name.

e The call "scanner.read()" gets the next token. It returns a tuple containing (1) the
token value and (2) the token type.

e The call "scanner.position()" gets the position of the current token. It returns a
tuple containing (1) the input file name, (2) the line number, and (3) the column
number.

e We can execute a method when a given token is found by specifying the function
as the token action. In our example, the function is count_lines. Maintaining a line

Page 133

www.EngineeringBooksPdf.com

A Python Book

count is actually unneeded, since the position gives us this information. However,
notice how we are able to maintain a value (in our case 1ine_count) as an
attribute of the scanner.

And, here are some comments on constructing the patterns used in a lexicon:

Plex.Range constructs a pattern that matches any character in the range.
Plex.Rep constructs a pattern that matches a sequence of zero or more items.
Plex.Repl constructs a pattern that matches a sequence of one or more items.
patl + pat2 constructs a pattern that matches a sequence containing pat 1
followed by pat?2.

e patl | pat2 constructs a pattern that matches either patl or pat2.

e Plex.Any constructs a pattern that matches any one character in its argument.
Now let's revisit our recursive descent parser, this time with a tokenizer built with Plex.
The tokenizer is trivial, but will serve as an example of how to hook it into a parser:

#!/usr/bin/env python

wnw

A recursive descent parser example using Plex.
This example uses Plex to implement a tokenizer.

Usage:

python python_201_rparser_plex.py [options] <inputfile>
Options:

-h, —--help Display this help message.
Example:

python python_201_rparser_plex.py myfile.txt
The grammar:

Prog ::= Command | Command Prog

Command ::= Func_call

Func_call ::= Term ' (' Func_call list '")'

Func_call_list ::= Func_call | Func_call ',' Func_call_list
Term = <word>

mmwn

import sys, string, types
import getopt
import Plex

from IPython.Shell import IPShellEmbed
ipshell = IPShellEmbed((),

#4# banner = '>>>>>>>> Into IPython >>>>>>>>',
#4# exit_msg = '<<<<<<<< Out of IPython <<<<<<<<'")
#
Constants
#
Page 134

www.EngineeringBooksPdf.com

A Python Book

AST node types
NoneNodeType =
ProgNodeType =
CommandNodeType =
FuncCallNodeType =
FuncCallListNodeType =
TermNodeType =

ad W NP o

Token types
NoneTokType =
LParTokType
RParTokType
WordTokType =
CommaTokType =
EOFTokType =

s wbhhE o

Dictionary to map node type values to node type names
NodeTypeDict = {

NoneNodeType: 'NoneNodeType',
ProgNodeType: 'ProgNodeType',
CommandNodeType: 'CommandNodeType',
FuncCallNodeType: 'FuncCallNodeType',
FuncCallListNodeType: 'FuncCallListNodeType',
TermNodeType: 'TermNodeType',
}
#
Representation of a node in the AST (abstract syntax tree).
#

class ASTNode:
def __init__ (self, nodeType,
self.nodeType = nodeType
self.children = []
for item in args:
self.children.append (item)
show (self, level):
self.showLevel (level)
print 'Node —-- Type %s' %
level += 1
for child in self.children:
if isinstance (child, ASTNode) :
child.show (level)
elif type(child) types.ListType:
for item in child:
item.show (level)

*args) :

def

NodeTypeDict [self.nodeType]

else:
self.showLevel (level)
print 'Child:', child
showLevel (self, level):
for idx in range (level):
print ' Y

def

Page 135

www.EngineeringBooksPdf.com

A Python Book

#

The recursive descent parser class.

Contains the "recognizer" methods, which implement the grammar
rules (above), one recognizer method for each production rule.
#

class ProgParser:

def _ init__ (self):
self.tokens = None
self.tokenType = NoneTokType
self.token = "'
self.lineNo = -1
self.infile None
self.tokens = None

def parseFile(self, infileName) :
self.tokens = None
self.tokenType = NoneTokType
self.token = "'

self.lineNo = -1

self.infile = file(infileName, 'r')

self.tokens = genTokens(self.infile, infileName)
try:

self.tokenType, self.token, self.lineNo =
self.tokens.next ()
except Stoplteration:
raise RuntimeError, 'Empty file'
result = self.prog_reco ()
self.infile.close()
self.infile = None
return result

def parseStream(self, instream):
self.tokens = None
self.tokenType = NoneTokType
self.token = "'

self.lineNo = -1
self.tokens = genTokens (self.instream, '<stream>')
try:

self.tokenType, self.token, self.lineNo =
self.tokens.next ()
except Stoplteration:
raise RuntimeError, 'Empty stream'
result = self.prog_reco ()
self.infile.close()
self.infile = None
return result

def prog_reco(self):
commandList = []
while 1:
result = self.command_reco ()
if not result:
break

Page 136

www.EngineeringBooksPdf.com

A Python Book

commandList.append (result)
return ASTNode (ProgNodeType, commandList)

def command_reco (self) :

if self.tokenType == EOFTokType:
return None
result = self.func_call_reco /()

return ASTNode (CommandNodeType, result)

def func_call _reco(self):
if self.tokenType == WordTokType:

term = ASTNode (TermNodeType, self.token)

self.tokenType, self.token, self.lineNo =
self.tokens.next ()

if self.tokenType == LParTokType:

self.tokenType, self.token, self.lineNo =

self.tokens.next ()

result = self.func_call_list_reco()
if result:
if self.tokenType == RParTokType:

self.tokenType, self.token, self.lineNo = \
self.tokens.next ()
return ASTNode (FuncCallNodeType, term,

result)
else:
raise ParseError(self.lineNo, 'missing right
paren')
else:
raise ParseError(self.lineNo, 'bad func call
list")

else:
raise ParseError (self.lineNo, 'missing left paren')
else:
return None

def func_call_ list_reco(self):
terms = []
while 1:
result = self.func_call_reco /()
if not result:
break
terms.append (result)
if self.tokenType != CommaTokType:
break
self.tokenType, self.token, self.lineNo =
self.tokens.next ()
return ASTNode (FuncCallListNodeType, terms)

#
The parse error exception class.
#
class ParseError (Exception) :

def __init__ (self, lineNo, msq) :

Page 137

www.EngineeringBooksPdf.com

A Python Book

RuntimeError._ _init__ (self, msqg)
self.lineNo = lineNo
self.msg = msg
def getLineNo (self):
return self.lineNo
def getMsg(self):
return self.msg

#
Generate the tokens.
Usage - example

gen = genTokens (infile)
tokType, tok, lineNo = gen.next ()
#

def genTokens (infile, infileName) :
letter = Plex.Range ("AZaz")

digit = Plex.Range("09")
name = letter + Plex.Rep(letter | digit)
lpar = Plex.Str (' (")

rpar = Plex.Str('")")
comma Plex.Str (', ")
comment = Plex.Str ("#") + Plex.Rep (Plex.AnyBut ("\n"))
space = Plex.Any (" \t\n")
lexicon = Plex.Lexicon ([

(name, 'word'),

lpar, '"lpar')

(’
(rpar, 'rpar'),
(comma, 'comma'),
(comment, Plex.IGNORE),

(space, Plex.IGNORE),

1)

scanner = Plex.Scanner (lexicon, infile, infileName)

while 1:
tokenType, token = scanner.read()
name, lineNo, columnNo = scanner.position ()
if tokenType == None:

tokType = EOFTokType
token = None
elif tokenType == 'word':
tokType = WordTokType
elif tokenType == 'lpar':
tokType = LParTokType
elif tokenType == 'rpar':
tokType = RParTokType
elif tokenType == 'comma':
tokType = CommaTokType
else:
tokType = NoneTokType
tok = token
yield (tokType, tok, lineNo)

def test (infileName) :
parser = ProgParser ()

Page 138

www.EngineeringBooksPdf.com

A Python Book

#ipshell (' (test) #1\nCtrl-D to exit')
result = None
try:
result = parser.parseFile(infileName)
except ParseError, exp:
sys.stderr.write ('ParseError: (%d) %s\n' % \
(exp.getLineNo (), exp.getMsg()))
if result:
result.show (0)

def usage():
print _ doc_

sys.exit (-1)

def main() :

args = sys.argv[l:]
try:
opts, args = getopt.getopt (args, 'h', ['help'])
except:
usage ()
for opt, val in opts:
if opt in ('-h', '—-help'):
usage ()
if len(args) != 1:
usage ()
infileName = args[0]

test (infileName)

if _ _name_ == '_ _main__ ':
#import pdb; pdb.set_trace()
main ()

And, here is a sample of the data we can apply this parser to:

Test for recursive descent parser and Plex.
Command #1

aaa ()
Command #2
bbb (ccc()) # An end of line comment.

Command #3
ddd (eee (), fff(ggg(), hhh(), iii()))
End of test

And, when we run our parser, it produces the following:

S python plex_recusive.py plex_recusive.data
Node —-- Type ProgNodeType
Node —-- Type CommandNodeType
Node —-- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: aaa
Node —-- Type FuncCallListNodeType
Node —-- Type CommandNodeType

Page 139

www.EngineeringBooksPdf.com

A Python Book

Node —-- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: bbb
Node —-- Type FuncCallListNodeType
Node —-- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: ccc
Node —-- Type FuncCallListNodeType
Node —-- Type CommandNodeType
Node —-- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: ddd
Node —-- Type FuncCallListNodeType
Node —-—- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: eee
Node —-- Type FuncCallListNodeType
Node —-- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: fff
Node —-- Type FuncCallListNodeType
Node —-—- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: ggg
Node —-- Type FuncCallListNodeType
Node —-- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: hhh
Node —-- Type FuncCallListNodeType
Node —-—- Type FuncCallNodeType
Node —-- Type TermNodeType
Child: iii
Node —-- Type FuncCallListNodeType

Comments:

e We can now put comments in our input, and they will be ignored. Comments
begin with a "#" and continue to the end of line. See the definition of comment in
function genTokens.

e This tokenizer does not require us to separate tokens with whitespace as did the
simple tokenizer in the earlier version of our recursive descent parser.

e The changes we made over the earlier version were to:

1. Import Plex.

2. Replace the definition of the tokenizer function genTokens.

3. Change the call to genTokens so that the call passes in the file name, which is
needed to create the scanner.

e Our new version of genTokens does the following:

1. Create patterns for scanning.
2. Create a lexicon (an instance of Plex.Lexicon), which uses the patterns.

Page 140

www.EngineeringBooksPdf.com

A Python Book

3. Create a scanner (an instance of Plex.Scanner), which uses the lexicon.
4. Execute a loop that reads tokens (from the scanner) and "yields" each one.

2.6.4 A survey of existing tools
For complex parsing tasks, you may want to consider the following tools:

e kwParsing -- A parser generator in Python --
http://gadfly.sourceforge.net/kwParsing.html

e PLY -- Python Lex-Yacc -- http://systems.cs.uchicago.edu/ply/

e PyLR -- Fast LR parsing in python --
http://starship.python.net/crew/scott/PyLLR .html

e Yapps -- The Yapps Parser Generator System --
http://theory.stanford.edu/~amitp/Y apps/

And, for lexical analysis, you may also want to look here:

e Using Regular Expressions for Lexical Analysis --
http://effbot.org/zone/xml-scanner.htm
e Plex -- http://www.cosc.canterbury.ac.nz/~greg/python/Plex/.
In the sections below, we give examples and notes about the use of PLY and pyparsing.

2.6.5 Creating a parser with PLY
In this section we will show how to implement our parser example with PLY.

First down-load PLY. It is available here: PLY (Python Lex-Yacc) --
http://www.dabeaz.com/ply/

Then add the PLY directory to your PYTHONPATH.

Learn how to construct lexers and parsers with PLY by reading doc/ply.html in the
distribution of PLY and by looking at the examples in the distribution.

For those of you who want a more complex example, see A Python Parser for the
RELAX NG Compact Syntax, which is implemented with PLY.

Now, here is our example parser. Comments and explanations are below:

#!/usr/bin/env python

mmwn

A parser example.
This example uses PLY to implement a lexer and parser.

The grammar:

Prog ::= Command¥*
Command ::= Func_call

Page 141

www.EngineeringBooksPdf.com

A Python Book

'('" Func_call_list
Func_call~*

Func_call ::= Term !
Func_call_list ::=

Term = <word>
Here is a sample "program" to use as input:

Test for recursive descent parser and Plex.
Command #1

aaa ()

Command #2

bbb (ccc()) # An end of line comment.
Command #3

ddd (eee (), fff(ggg(), hhh(), 1iii()))

End of test

mwww

import
import
import
import
import

Sys
types

getopt

ply.lex as lex
ply.yacc as yacc

#
Globals
#

startlinepos = 0

#
Constants
#

AST node types
NoneNodeType =
ProgNodeType =
CommandNodeType =
CommandListNodeType =
FuncCallNodeType =
FuncCallListNodeType =
TermNodeType =

o Ul W NP O

Dictionary to map node
NodeTypeDict = {

type values to node type names

NoneNodeType: 'NoneNodeType',
ProgNodeType: 'ProgNodeType',
CommandNodeType: 'CommandNodeType',
CommandListNodeType: 'CommandListNodeType',
FuncCallNodeType: 'FuncCallNodeType',
FuncCallListNodeType: 'FuncCalllListNodeType',
TermNodeType: 'TermNodeType',

}

Page 142

www.EngineeringBooksPdf.com

A Python Book

Representation of a node in the AST (abstract syntax tree).
#
class ASTNode:
def _ _init__ (self, nodeType, *args):
self.nodeType = nodeType
self.children = []
for item in args:
self.children.append (item)
def append(self, item):
self.children.append (item)
def show(self, level):
self.showLevel (level)
print 'Node —-- Type: %s' % NodeTypeDict[self.nodeTypel
level += 1
for child in self.children:
if isinstance (child, ASTNode) :
child.show (level)
elif type(child) == types.ListType:
for item in child:
item.show (level)
else:
self.showLevel (level)
print 'Value:', child
def showLevel (self, level):
for idx in range(level):

print ' Ly
#
Exception classes
#
class LexerError (Exception) :
def __init__ (self, msg, lineno, columnno) :
self.msg = msg
self.lineno = lineno
self.columnno = columnno

def show(self) :
sys.stderr.write ('Lexer error (%d, %d) %s\n' % \
(self.lineno, self.columnno, self.msg))

class ParserError (Exception) :

def _ _init_ (self, msg, lineno, columnno) :
self.msg = msg
self.lineno = lineno
self.columnno = columnno

def show(self) :
sys.stderr.write ('Parser error (%d, %d) %s\n' % \

(self.lineno, self.columnno, self.msqg))

#
Lexer specification
#
tokens = (

"NAME',

Page 143

www.EngineeringBooksPdf.com

A Python Book

'"LPAR', 'RPAR',
"COMMA',
)

Tokens

. r
t RPAR = r
t_COMMA = r'
t_NAME = r

Ignore whitespace
t_ignore = ' \t'

Ignore comments ('#' to end of line)
def t_COMMENT (t) :
r'\#[*\n]*"'

pass

def t_newline(t) :

r'\n+'
global startlinepos
startlinepos = t.lexer.lexpos — 1

t.lineno += t.value.count ("\n")

def t_error(t):
global startlinepos
msg = "Illegal character '$s'" % (t.value[O])
columnno = t.lexer.lexpos - startlinepos
raise LexerError (msg, t.lineno, columnno)

#
Parser specification
#
def p_prog(t):

'prog : command_list'

t[0] = ASTNode (ProgNodeType, t[l])

def p_command_list_1(t):
'command_list : command’'

t[0] = ASTNode (CommandListNodeType, t[1l])

def p_command_list_2(t):

'command_list : command_list command'
t[l].append(t[2])
t[0] = t[1]

def p_command(t) :
'command : func_call'
t[0] = ASTNode (CommandNodeType, t[l])

def p_func_call_1(t):
'func_call : term LPAR RPAR'

Page 144

www.EngineeringBooksPdf.com

A Python Book

t[0] = ASTNode (FuncCallNodeType, t[1l])

def p_func_call 2 (t):
'func_call : term LPAR func_call_list RPAR'
t[0] = ASTNode (FuncCallNodeType, t[1l], t[3])

def p_func_call_list_1(t):
'func_call_list : func_call'
t[0] = ASTNode (FuncCalllListNodeType, tI[1l])

def p_func_call list_2(t):
'func_call_1list : func_call_list COMMA func_call'
t[l].append(t[3])
t[0] = t[1]

def p_term(t) :
'term : NAME'
t[0] = ASTNode (TermNodeType, t[l])

def p_error(t):
global startlinepos
msg = "Syntax error at '%s'" % t.value
columnno = t.lexer.lexpos — startlinepos
raise ParserError (msg, t.lineno, columnno)

#
Parse the input and display the AST (abstract syntax tree)
#
def parse(infileName) :
startlinepos = 0
Build the lexer
lex.lex (debug=1)
Build the parser
yacc.yacc ()
Read the input

infile = file(infileName, 'r')
content = infile.read()
infile.close ()

try:

Do the parse
result = yacc.parse (content)
Display the AST
result.show (0)

except LexerError, exp:
exp.show ()

except ParserError, exp:
exp.show ()

USAGE_TEXT = _ _doc___
def usage():
print USAGE_TEXT
sys.exit (-1)

Page 145

www.EngineeringBooksPdf.com

A Python Book

def main() :
args = sys.argv[l:]
try:
opts, args = getopt.getopt (args, 'h', ['help'])
except:
usage ()
relink = 1
for opt, val in opts:
if opt in ('-h', '—--help'):
usage ()
if len(args) !=
usage ()
infileName = args[0]
parse (infileName)

1:

if __ name_ == '_ main__ ':
#import pdb; pdb.set_trace ()
main ()

Applying this parser to the following input:

Test for recursive descent parser and Plex.
Command #1

aaa ()
Command #2
bbb (ccc()) # An end of line comment.

Command #3
ddd (eee (), fff(ggg(), hhh(), iii()))
End of test

produces the following output:

Node —-- Type: ProgNodeType
Node —-- Type: CommandListNodeType
Node —-—- Type: CommandNodeType
Node —-- Type: FuncCallNodeType
Node —-- Type: TermNodeType
Value: aaa
Node —-- Type: CommandNodeType
Node —-—- Type: FuncCallNodeType
Node —-- Type: TermNodeType
Value: bbb
Node —-- Type: FuncCallListNodeType
Node —-- Type: FuncCallNodeType
Node —-- Type: TermNodeType
Value: ccc
Node —-- Type: CommandNodeType
Node —-—- Type: FuncCallNodeType
Node —-- Type: TermNodeType
Value: ddd
Node —-- Type: FuncCallListNodeType
Node —-- Type: FuncCallNodeType

Page 146

www.EngineeringBooksPdf.com

A Python Book

Node —-- Type: TermNodeType
Value: eee
Node —-—- Type: FuncCallNodeType
Node —-- Type: TermNodeType
Value: fff
Node ——- Type: FuncCallListNodeType
Node —-- Type: FuncCallNodeType
Node —-- Type: TermNodeType
Value: ggg
Node —-- Type: FuncCallNodeType
Node —-- Type: TermNodeType
Value: hhh
Node —-- Type: FuncCallNodeType
Node —-- Type: TermNodeType
Value: 1iii

Comments and explanation:

e Creating the syntax tree -- Basically, each rule (1) recognizes a non-terminal, (2)
creates a node (possibly using the values from the right-hand side of the rule), and
(3) returns the node by setting the value of t[0]. A deviation from this is the
processing of sequences, discussed below.

e Sequences -- p_command_list_1 and p_command_list_1 show how to handle
sequences of items. In this case:

o p_command_list_1 recognizes a command and creates an instance of
ASTNode with type CommandListNodeType and adds the command to it as a
child, and

o p_command_list_2 recognizes an additional command and adds it (as a child)
to the instance of ASTNode that represents the list.

e Distinguishing between different forms of the same rule -- In order to process
alternatives to the same production rule differently, we use different functions
with different implementations. For example, we use:

o p_func_call_I to recognize and process "func_call : term LPAR RPAR" (a
function call without arguments), and

o p_func_call_2 to recognize and process "func_call : term LPAR func_call_list
RPAR" (a function call with arguments).

e Reporting errors -- Our parser reports the first error and quits. We've done this by
raising an exception when we find an error. We implement two exception classes:
LexerError and ParserError. Implementing more than one exception class enables
us to distinguish between different classes of errors (note the multiple except:
clauses on the try: statement in function parse). And, we use an instance of the
exception class as a container in order to "bubble up" information about the error
(e.g. a message, a line number, and a column number).

Page 147

www.EngineeringBooksPdf.com

A Python Book

2.6.6 Creating a parser with pyparsing

pyparsing is a relatively new parsing package for Python. It was implemented and is
supported by Paul McGuire and it shows promise. It appears especially easy to use and
seems especially appropriate in particular for quick parsing tasks, although it has features
that make some complex parsing tasks easy. It follows a very natural Python style for
constructing parsers.

Good documentation comes with the pyparsing distribution. See file
HowToUseParsing.html. So, I won't try to repeat that here. What follows is an attempt to
provide several quick examples to help you solve simple parsing tasks as quickly as
possible.

You will also want to look at the samples in the examples directory, which are very
helpful. My examples below are fairly simple. You can see more of the ability of
pyparsing to handle complex tasks in the examples.

Where to get it - You can find pyparsing at: Pyparsing Wiki Home --
http://pyparsing.wikispaces.com/

How to install it - Put the pyparsing module somewhere on your PYTHONPATH.

And now, here are a few examples.

2.6.6.1 Parsing comma-delimited lines

Note: This example is for demonstration purposes only. If you really to need to parse
comma delimited fields, you can probably do so much more easily with the CSV (comma
separated values) module in the Python standard library.

Here is a simple grammar for lines containing fields separated by commas:

import sys
from pyparsing import alphanums, ZeroOrMore, Word

fieldDef = Word (alphanums)
lineDef = fieldDef + ZeroOrMore("," + fieldDef)

def test () :
args = sys.argv[l:]
if len(args) != 1:

print 'usage: python pyparsing_testl.py <datafile.txt>'
sys.exit (-1)

infilename = sys.argv[1l]
infile = file(infilename, 'r')
for line in infile:
fields = lineDef.parseString(line)

print fields

Page 148

www.EngineeringBooksPdf.com

A Python Book

‘test()

Here is some sample data:

abcd, defqg
11111,22222,33333

And, when we run our parser on this data file, here is what we see:

S python comma_parser.py samplel.data
['abcd', ', ', 'defg']
(*11111°v, *,', '22222', ',', '33333']

Notes and explanation:

e Note how the grammar is constructed from normal Python calls to function and
object/class constructors. I've constructed the parser in-line because my example
is simple, but constructing the parser in a function or even a module might make
sense for more complex grammars. pyparsing makes it easy to use these these
different styles.

e Use "+" to specify a sequence. In our example, a 1ineDef isa fieldDef
followed by

e Use ZeroOrMore to specify repetition. In our example, a 1ineDef is a
fieldDef followed by zero or more occurances of comma and fieldDef.
There is also OneOrMore when you want to require at least one occurance.

e Parsing comma delimited text happens so frequently that pyparsing provides a
shortcut. Replace:

‘ lineDef fieldDef + ZeroOrMore("," + fieldDef)

with:

\ lineDef = delimitedList (fieldDef)

And note that delimitedList takes an optional argument de1im used to specify
the delimiter. The default is a comma.

2.6.6.2 Parsing functors

This example parses expressions of the form func (argl, arg2, arg3):

from pyparsing import Word, alphas, alphanums, nums, ZeroOrMore,
Literal

lparen = Literal (" (")
rparen = Literal(")")

identifier = Word(alphas, alphanums + "_")
integer = Word(nums)
functor = identifier
arg = identifier | integer
Page 149

www.EngineeringBooksPdf.com

A Python Book

args = arg + ZeroOrMore("," + arqg)

expression = functor + lparen + args + rparen

def test():
content = raw_input ("Enter an expression: ")
parsedContent = expression.parseString(content)
print parsedContent

test ()

Explanation:

e Use Literal to specify a fixed string that is to be matched exactly. In our example,
alparenisa (.

e Word takes an optional second argument. With a single (string) argument, it
matches any contiguous word made up of characters in the string. With two
(string) arguments it matches a word whose first character is in the first string and
whose remaining characters are in the second string. So, our definition of
identifier matches a word whose first character is an alpha and whose remaining
characters are alpha-numerics or underscore. As another example, you can think
of Word("0123456789") as analogous to a regexp containing the pattern "[0-9]+".

e Use a vertical bar for alternation. In our example, an arg can be either an identifier
or an integer.

2.6.6.3 Parsing names, phone numbers, etc.

This example parses expressions having the following form:

Input format:
[name] [phone] [city, state zip]
Last, first 111-222-3333 city, ca 99999

Here is the parser:

import sys
from pyparsing import alphas, nums, ZeroOrMore, Word, Group,
Suppress, Combine

lastname = Word (alphas)

firstname = Word(alphas)

city = Group (Word (alphas) + ZeroOrMore (Word (alphas)))
state = Word (alphas, exact=2)

zip = Word (nums, exact=5)

name = Group (lastname + Suppress(",") + firstname)

phone = Combine (Word (nums, exact=3) + "-" + Word(nums, exact=3) + "-"
+ Word (nums, exact=4))

location = Group(city + Suppress(",") + state + zip)

record = name + phone + location

Page 150

www.EngineeringBooksPdf.com

A Python Book

def test () :
args = sys.argv[l:]
if len(args) != 1:

print 'usage: python pyparsing_test3.py <datafile.txt>'
sys.exit (-1)
infilename = sys.argv[1l]
infile = file(infilename, 'r')
for line in infile:
line = line.strip()
if line and line[0] != "#":
fields = record.parseString(line)
print fields

test ()

And, here is some sample input:

Jabberer, Jerry 111-222-3333 Bakersfield, CA 95111
Kackler, Kerry 111-222-3334 Fresno, CA 95112
Louderdale, Larry 111-222-3335 Los Angeles, CA 94001

Here is output from parsing the above input:

[['Jabberer', 'Jerry'], '111-222-3333', [['Bakersfield'], 'CA',
'95111"']]
[['Kackler', 'Kerry'], '111-222-3334', [['Fresno'], 'CA', '95112']]
[['Louderdale', 'Larry'], '111-222-3335', [['Los', 'Angeles'], 'CA',
'94001"']1]

Comments:

e We use the 1en=n argument to the Word constructor to restict the parser to

accepting a specific number of characters, for example in the zip code and phone
number. Word also accepts min=n'"' and ' " max=n to enable you to restrict

the length of a word to within a range.

e We use Group to group the parsed results into sub-lists, for example in the
definition of city and name. Group enables us to organize the parse results into
simple parse trees.

e We use Combine to join parsed results back into a single string. For example, in

the phone number, we can require dashes and yet join the results back into a
single string.

e We use Suppress to remove unneeded sub-elements from parsed results. For
example, we do not need the comma between last and first name.

2.6.6.4 A more complex example

This example (thanks to Paul McGuire) parses a more complex structure and produces a

dictionary.

Page 151

www.EngineeringBooksPdf.com

A Python Book

Here is the code:

from pyparsing import Literal, Word, Group, Dict, ZeroOrMore, alphas,
nums, \
delimitedList
import pprint
testData = """
R o o o o o o o o +
| | A1 | BL | Cc1 | D1 | A2 | B2 | C2 | D2 |
+ + + + + + + + + +
min	71 43	7	15	82	98	1 1 37		
max	11	52	10	17	85	112	4	39
ave	9	47	8	16	84	106	3	38
sdev	1	3 1	1	1	3 1	1		
e N N N N N N N N +
mwww
Define grammar for datatable
heading = (Literal (
" +———— +———— +———— +———— +———— +———— +———— +———— -+
+
" | A1 | BL | Cc1 | D1 | A2 | B2 | C2 | D2 |" +
"4 + + + + + + + + +")
suppress ()
vert = Literal("|") .suppress|()
number = Word (nums)
rowData = Group(vert + Word(alphas) + wvert +
delimitedList (number,"|") +
vert)
trailing = Literal (
" o o o o o o o N +") .
suppress ()
datatable = heading + Dict (ZeroOrMore (rowData)) + trailing
def main() :
Now parse data and print results
data = datatable.parseString(testData)
print "data:", data
print "data.asList():",
pprint.pprint (data.asList ())
print "data keys:", data.keys/()
print "data['min']:", data['min']
print "data.max:", data.max
if _ name_ == '_ main_ ':
main ()
When we run this, it produces the following:
‘data: [['min', '7', '43', '7', '15', '82', '98', '1', '37'],

Page 152

www.EngineeringBooksPdf.com

A Python Book

['max', '11', '52', '10', '17', '85', '112', '4', '39'],

[vavev, 191, 1471, '8', '16', '84', '106', 131, '38'],

['sdev', 'l', 131, 'l', 'l', 'l', 131, 'l', 'l']]
data.asList():[['min', '7', '43', '7', '15', '82', '9g', '1', '37'],
['max', 'l1l', '52', '10', '17', '85', '112', '4', '39'],

[vavev, 191, 1471, '8', '16', '84', '106', 131, '38'],

['sdev', 'l', |3|, 'l', 'l', 'l', |3|, 'l', 'l']]

data keys: ['ave', 'min', 'sdev', 'max']

datal['min']: ['7', '43', '7', '15', '82', '98', '1', '37']
data.max: ['11', '52', 'i10', '17', '85', '112', '4', '39']

Notes:

e Note the use of Dict to create a dictionary. The print statements show how to get
at the items in the dictionary.

e Note how we can also get the parse results as a list by using method asList.

e Again, we use suppress to remove unneeded items from the parse results.

2.7 GUI Applications

2.7.1 Introduction

This section will help you to put a GUI (graphical user interface) in your Python
program.

We will use a particular GUI library: PyGTK. We've chosen this because it is reasonably
light-weight and our goal is to embed light-weight GUI interfaces in an (possibly)
existing application.

For simpler GUI needs, consider EasyGUI, which is also described below.

For more heavy-weight GUI needs (for example, complete GUI applications), you may
want to explore WxPython. See the WxPython home page at: http://www.wxpython.org/

2.7.2 PyGtk
Information about PyGTK is here: The PyGTK home page -- http://www.pygtk.org//.

2.7.2.1 A simple message dialog box

In this section we explain how to pop up a simple dialog box from your Python
application.

To do this, do the following:

1. Import gtk into your Python module.
2. Define the dialog and its behavior.

Page 153

www.EngineeringBooksPdf.com

A Python Book

3. Create an instance of the dialog.
4. Run the event loop.
Here is a sample that displays a message box:

#!/usr/bin/env python

import sys
import getopt
import gtk

class MessageBox (gtk.Dialog) :
def _ _init_ (self, message="", buttons=(), pixmap=None,
modal= True) :
gtk.Dialog.__init__ (self)
self.connect ("destroy", self.quit)
self.connect ("delete_event", self.quit)
if modal:
self.set_modal (True)
hbox = gtk.HBox (spacing=5)
hbox.set_border_width (5)
self.vbox.pack_start (hbox)
hbox.show ()
if pixmap:
self.realize()
pixmap = Pixmap (self, pixmap)
hbox.pack_start (pixmap, expand=False)
pixmap.show ()
label = gtk.Label (message)
hbox.pack_start (label)
label.show ()
for text in buttons:
b = gtk.Button (text)
b.set_flags (gtk.CAN_DEFAULT)
b.set_data ("user_data", text)
b.connect ("clicked", self.click)
self.action_area.pack_start (b)

b.show ()
self.ret = None
def quit (self, *args):
self.hide ()

self.destroy ()
gtk.main_quit ()
def click(self, button):
self.ret = button.get_data ("user_data")
self.quit ()

create a message box, and return which button was pressed
def message_box (title="Message Box", message="", buttons=(),
pixmap=None,
modal= True) :
win = MessageBox (message, buttons, pixmap=pixmap, modal=modal)
win.set_title(title)

Page 154

www.EngineeringBooksPdf.com

A Python Book

win.show ()
gtk.main ()
return win.ret

def test():
result = message_box (title='Test #1',
message="'Here is your message',
buttons=('0Ok', 'Cancel'))
print 'result:', result

USAGE_TEXT = """

Usage:

python simple_dialog.py [options]
Options:

-h, —--help Display this help message.
Example:

python simple_dialog.py

wnw

def usage() :
print USAGE_TEXT
sys.exit (-1)

def main () :

args = sys.argv[l:]
try:
opts, args = getopt.getopt (args, 'h', ['help'])
except:
usage ()
relink = 1
for opt, val in opts:
if opt in ('-h', '--help'):
usage ()
if len(args) != 0:
usage ()
test ()
if __ name_ == '_ main__ ':
#import pdb; pdb.set_trace ()
main ()

Some explanation:

e First, we import gtk
e Next we define a class MessageBox that implements a message box. Here are a
few important things to know about that class:
o Itis a subclass of gtk.Dialog.
o Itcreates a label and packs it into the dialog's client area. Note that a Dialog is
a Window that contains a vbox at the top of and an action_area at the bottom
of its client area. The intension is for us to pack miscellaneous widgets into
the vbox and to put buttons such as "Ok", "Cancel", etc into the action_area.

Page 155

www.EngineeringBooksPdf.com

A Python Book

o It creates one button for each button label passed to its constructor. The
buttons are all connected to the click method.

o The click method saves the value of the user_data for the button that was
clicked. In our example, this value will be either "Ok" or "Cancel".

e And, we define a function (message_box) that (1) creates an instance of the
MessageBox class, (2) sets its title, (3) shows it, (4) starts its event loop so that it
can get and process events from the user, and (5) returns the result to the caller (in
this case "Ok" or "Cancel").

e Our testing function (test) calls function message_box and prints the result.

e This looks like quite a bit of code, until you notice that the class MessageBox and
the function message_box could be put it a utility module and reused.

2.7.2.2 A simple text input dialog box

And, here is an example that displays an text input dialog:

#!/usr/bin/env python

import sys
import getopt
import gtk

class EntryDialog(gtk.Dialog) :
def __init__ (self, message="", default_text='"', modal=True) :
gtk.Dialog.__init__ (self)
self.connect ("destroy", self.quit)
self.connect ("delete_event", self.quit)
if modal:
self.set_modal (True)
box = gtk.VBox (spacing=10)
box.set_border_width (10)
self.vbox.pack_start (box)
box.show ()
if message:
label = gtk.Label (message)
box.pack_start (label)
label.show ()
self.entry = gtk.Entry ()
self.entry.set_text (default_text)
box.pack_start (self.entry)
self.entry.show ()
self.entry.grab_focus ()
button = gtk.Button ("OK")
button.connect ("clicked", self.click)
button.set_flags (gtk.CAN_DEFAULT)
self.action_area.pack_start (button)
button.show ()
button.grab_default ()
button = gtk.Button ("Cancel")

Page 156

www.EngineeringBooksPdf.com

A Python Book

button.connect ("clicked", self.quit)
button.set_flags (gtk.CAN_DEFAULT)
self.action_area.pack_start (button)
button.show ()
self.ret = None

def quit (self, w=None, event=None) :
self.hide ()
self.destroy ()
gtk.main_quit ()

def click(self, button):
self.ret = self.entry.get_text ()
self.quit ()

def input_box(title="Input Box", message="", default_text='"',
modal=True) :
win = EntryDialog(message, default_text, modal=modal)
win.set_title(title)
win.show ()
gtk.main ()
return win.ret

def test () :
result = input_box (title='Test #2',
message="Enter a valuexxx:',
default_text='a default value')
if result is None:
print 'Canceled'

else:
print 'result: "%s"' % result

USAGE_TEXT = """
Usage:

python simple_dialog.py [options]
Options:

-h, —--help Display this help message.
Example:

python simple_dialog.py

mmn

def usage() :
print USAGE_TEXT
sys.exit (=1)

def main () :

args = sys.argv[l:]
try:

opts, args = getopt.getopt (args, 'h', ['help'])
except:

usage ()
relink =1
for opt, val in opts:

if opt in ('-h', '—-help'):

usage ()

Page 157

www.EngineeringBooksPdf.com

A Python Book

if len(args) != 0:
usage ()
test ()
if __ name_ == '_ main__ ':
#import pdb; pdb.set_trace()
main ()

Most of the explanation for the message box example is relevant to this example, too.
Here are some differences:

e Our EntryDialog class constructor creates instance of gtk.Entry, sets its default
value, and packs it into the client area.

e The constructor also automatically creates two buttons: "OK" and "Cancel". The
"OK" button is connect to the click method, which saves the value of the entry
field. The "Cancel" button is connect to the quit method, which does not save the
value.

e And, if class EntryDialog and function input_box look usable and useful, add
them to your utility gui module.

2.7.2.3 A file selection dialog box

This example shows a file selection dialog box:

#!/usr/bin/env python

import sys
import getopt
import gtk

class FileChooser (gtk.FileSelection) :
def __init__ (self, modal=True, multiple=True) :

gtk.FileSelection.__init__ (self)
self.multiple = multiple
self.connect ("destroy", self.quit)
self.connect ("delete_event", self.quit)
if modal:

self.set_modal (True)
self.cancel_button.connect ('clicked', self.quit)
self.ok_button.connect ('clicked', self.ok_cb)
if multiple:

self.set_select_multiple (True)

self.ret = None
def quit (self, *args):
self.hide ()

self.destroy ()
gtk.main_quit ()
def ok_cb(self, b):
if self.multiple:
self.ret = self.get_selections()

Page 158

www.EngineeringBooksPdf.com

A Python Book

else:
self.ret = self.get_filename ()
self.quit ()

def file_sel_box(title="Browse", modal=False, multiple=True) :
win = FileChooser (modal=modal, multiple=multiple)
win.set_title(title)
win.show ()
gtk.main ()
return win.ret

def file_ open_box (modal=True) :
return file_sel_box ("Open", modal=modal, multiple=True)
def file_save_box (modal=True) :
return file_sel_box("Save As", modal=modal, multiple=False)

def test () :
result = file_open_box()
print 'open result:', result
result = file_save_box()

print 'save result:', result

USAGE_TEXT = """
Usage:
python simple_dialog.py [options]
Options:
-h, —--help Display this help message.
Example:

python simple_dialog.py

mmn

def usage() :
print USAGE_TEXT
sys.exit (=1)

def main () :
args = sys.argv[l:]
try:
opts, args = getopt.getopt (args, 'h', ['help'])
except:
usage ()
relink = 1
for opt, val in opts:
if opt in ('-h', '—-help'):
usage ()
if len(args) !=
usage ()
test ()

0:

if _ name_ == '__ _main__ ':
main ()
#import pdb
#pdb.run ('main() ")

Page 159

www.EngineeringBooksPdf.com

A Python Book

A little guidance:

e There is a pre-defined file selection dialog. We sub-class it.

e This example displays the file selection dialog twice: once with a title "Open" and
once with a title "Save As".

e Note how we can control whether the dialog allows multiple file selections. And,
if we select the multiple selection mode, then we use get_selections instead of
get_filename in order to get the selected file names.

e The dialog contains buttons that enable the user to (1) create a new folder, (2)
delete a file, and (3) rename a file. If you do not want the user to perform these
operations, then call hide_fileop_buttons. This call is commented out in our
sample code.

Note that there are also predefined dialogs for font selection (FontSelectionDialog) and
color selection (ColorSelectionDialog)

2.7.3 EasyGUI

If your GUI needs are minimalist (maybe a pop-up dialog or two) and your application is
imperative rather than event driven, then you may want to consider EasyGUI. As the
name suggests, it is extremely easy to use.

How to know when you might be able to use EasyGUI:

e Your application does not need to run in a window containing menus and a menu
bar.

e Your GUI needs amount to little more than displaying a dialog now and then to
get responses from the user.

e You do not want to write an event driven application, that is, one in which your
code sits and waits for the the user to initiate operation, for example, with menu
items.

EasyGUI plus documentation and examples are available at EasyGUI home page at
SourceForge -- http://easygui.sourceforge.net/

EasyGUI provides functions for a variety of commonly needed dialog boxes, including:

e A message box displays a message.

A yes/no message box displays "Yes" and "No" buttons.

A continue/cancel message box displays "Continue" and "Cancel" buttons.

A choice box displays a selection list.

An enter box allows entry of a line of text.

An integer box allows entry of an interger.

A multiple entry box allows entry into multiple fields.

Code and text boxes support the display of text in monospaced or porportional

Page 160

www.EngineeringBooksPdf.com

A Python Book

fonts.
e File and directory boxes enable the user to select a file or a directory.
See the documentation at the EasyGUI Web site for more features.

For a demonstration of EasyGUI's capabilities, run the easygui . py as a Python script:

‘$ python easygui.py

2.7.3.1 A simple EasyGUI example

Here is a simple example that prompts the user for an entry, then shows the response in a
message box:

import easygui

def testeasygui () :
response = easyguil.enterbox (msg='Enter your name:', title='Name

Entry')
easyguil.msgbox (msg=response, title='Your Response')

testeasygui ()

2.7.3.2 An EasyGUI file open dialog example

This example presents a dialog to allow the user to select a file:

import easygui

def test():
response = easygui.fileopenbox (msg='Select a file')

[o)

print 'file name: %$s' % response

test ()

2.8 Guidance on Packages and Modules

2.8.1 Introduction

Python has an excellent range of implementation organization structures. These range
from statements and control structures (at a low level) through functions, methods, and
classes (at an intermediate level) and modules and packages at an upper level.

This section provides some guidance with the use of packages. In particular:

e How to construct and implement them.
e How to use them.
e How to distribute and install them.

Page 161

www.EngineeringBooksPdf.com

A Python Book

2.8.2 Implementing Packages
A Python package is a collection of Python modules in a disk directory.

In order to be able to import individual modules from a directory, the directory must
contain a file named __init__.py. (Note that requirement does not apply to directories that
are listed in PYTHONPATH.) The __init__.py serves several purposes:

e The presence of the file __init__.py in a directory marks the directory as a Python
package, which enables importing modules from the directory.

e The first time an application imports any module from the directory/package, the
code in the module __init__ is evaluated.

e If the package itself is imported (as opposed to an individual module within the
directory/package), then it is the __init__ that is imported (and evaluated).

2.8.3 Using Packages

One simple way to enable the user to import and use a package is to instruct the use to
import individual modules from the package.

A second, slightly more advanced way to enable the user to import the package is to
expose those features of the package in the __init__ module. Suppose that module mod1
contains functions funla and funlb and suppose that module mod2 contains functions
fun2a and fun2b. Then file __init__ .py might contain the following:

from modl import funla, funlb
from mod2 import fun2a, fun2b

Then, if the following is evaluated in the user's code:

‘import testpackages

Then testpackages will contain funla, funlb, fun2a, and fun2b.

For example, here is an interactive session that demostrates importing the package:

>>> import testpackages
>>> print dir (testpackages)

["_builtins__ ', '__doc__', "_ _file_', °_ _name__ ',
‘__path__ ',
‘funla', "~ funlb', "~fun2a', "fun2b', ‘modl', ‘mod2']

2.8.4 Distributing and Installing Packages

Distutils (Python Distribution Utilities) has special support for distrubuting and installing
packages. Learn more here: Distributing Python Modules --
http://docs.python.org/distutils/index.html.

Page 162

www.EngineeringBooksPdf.com

A Python Book

As our example, imagine that we have a directory containing the following:

Testpackages

Testpackages/README
Testpackages/MANIFEST.in
Testpackages/setup.py
Testpackages/testpackages/__init__ .py
Testpackages/testpackages/modl.py
Testpackages/testpackages/mod2.py

Notice the sub-directory Testpackages/testpackages containing the file __init__ .py.
This is the Python package that we will install.

We'll describe how to configure the above files so that they can be packaged as a single
distribution file and so that the Python package they contain can be installed as a package
by Distutils.

The MANIFEST . in file lists the files that we want included in our distribution. Here is
the contents of our MANIFEST.in file:

include README MANIFEST MANIFEST.in
include setup.py
include testpackages/*.py

The setup.py file describes to Distutils (1) how to package the distribution file and (2)
how to install the distribution. Here is the contents of our sample setup.py:

#!/usr/bin/env python
from distutils.core import setup # [1]
long_description = 'Tests for installing and distributing Python
packages'
setup (name = 'testpackages', # [2]
version = '1.0a’',
description = 'Tests for Python packages',
maintainer = 'Dave Kuhlman',
maintainer_email = 'dkuhlman@rexx.com',
url = 'http://www.rexx.com/~dkuhlman',
long_description = long_description,
packages = ['testpackages'] # [3]
)
Explanation:
1. We import the necessary component from Distutils.

2. We describe the package and its developer/maintainer.

3. We specify the directory that is to be installed as a package. When the user
installs our distribution, this directory and all the modules in it will be installed as
a package.

Page 163

www.EngineeringBooksPdf.com

A Python Book

Now, to create a distribution file, we run the following:

‘python setup.py sdist —--formats=gztar

which will create a file testpackages—1.0a.tar.gz under the directory dist.

Then, you can give this distribution file to a potential user, who can install it by doing the
following:

S tar xvzf testpackages-1.0a.tar.gz

$ cd testpackages-1.0a

$ python setup.py build

S python setup.py install # as root

2.9 End Matter

2.9.1 Acknowledgements and Thanks

e Thanks to the implementors of Python for producing an exceptionally usable and
enjoyable programming language.

e Thanks to Dave Beazley and others for SWIG and PLY.

e Thanks to Greg Ewing for Pyrex and Plex.

e Thanks to James Henstridge for PyGTK.

2.9.2 See Also

e The main Python Web Site -- http://www.python.org for more information on
Python.

e Python Documentation -- http://www.python.org/doc/ for lots of documentation
on Python

e Dave's Web Site -- http://http://www.davekuhlman.org for more software and
information on using Python for XML and the Web.

e The SWIG home page -- http://www.swig.org for more information on SWIG
(Simplified Wrapper and Interface Generator).

e The Pyrex home page -- http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
for more information on Pyrex.

e PLY (Python Lex-Yacc) home page -- http://www.dabeaz.com/ply/ for more
information on PLY.

e The Plex home page -- http://www.cosc.canterbury.ac.nz/greg.ewing/python/Plex/
for more information on Plex.

e Distributing Python Modules -- http://docs.python.org/distutils/index.html for
information on the Python Distribution Utilities (Distutils).

Page 164

www.EngineeringBooksPdf.com

A Python Book

3 Part 3 -- Python Workbook

3.1 Introduction

This document takes a workbook and exercise-with-solutions approach to Python
training. It is hoped that those who feel a need for less explanation and more practical
exercises will find this useful.

A few notes about the exercises:

e ['ve tried to include solutions for most of the exercises. Hopefully, you will be
able to copy and paste these solutions into your text editor, then extend and
experiment with them.

e [use two interactive Python interpreters (although they are the same Python
underneath). When you see this prompt >>>, it's the standard Python interpreter.
And, when you see this prompt In [1] :, it's [Python -
http://ipython.scipy.org/moin/.

The latest version of this document is at my Web site (URL above).

If you have comments or suggestions, please send them my way.
3.2 Lexical Structures

3.2.1 Variables and names

A name is any combination of letters, digits, and the underscore, but the first character
must be a letter or an underscore. Names may be of any length.

Case is significant.
Exercises:

1. Which of the following are valid names?
l. total
total_of all_vegetables
big-title-1
_inner_func
lbigtitle
6. bigtitlel
2. Which or the following pairs are the same name:
1. the last itemand the last item

Nk W

Page 165

www.EngineeringBooksPdf.com

A Python Book

2. the last _itemand The Last Item
3. itemi and item]
4. iteml and iteml

Solutions:

1. Items 1, 2, 4, and 6 are valid. Item 3 is not a single name, but is three items
separated by the minus operator. Item 5 is not valid because it begins with a digit.
2. Python names are case-sensitive, which means:
1. the_last_itemand the_last_item are the same.
2. the_last_itemand The_Last_TItem are different -- The second name
has an upper-case characters.
itemi and item7 are different.

4. iteml and iteml are different -- This one may be difficult to see,
depending on the font you are viewing. One name ends with the digit one; the
other ends with the alpha character "el". And this example provides a good
reason to use "1" and "1" judiciously in names.

The following are keywords in Python and should not be used as variable names:

2

and del from not while
as elif global or with
assert else if pass yield
break except import print
class exec in raise
continue finally is return
def for lambda try

Exercises:

1. Which of the following are valid names in Python?

1. _global

2. global

3. file
Solutions:

1. Do not use keywords for variable names:

1. Valid

2. Not a valid name. "global" is a keyword.

3. Valid, however, "file" is the name of a built-in type, as you will learn later, so
you are advised not to redefine it. Here are a few of the names of built-in
types: "file", "int", "str", "float", "list", "dict", etc. See Built-in Types --
http://docs.python.org/lib/types.html for more built-in types..

The following are operators in Python and will separate names:

+ - * *x / // 3
<< >> & n ~
Page 166

www.EngineeringBooksPdf.com

A Python Book

< > <= >= == = <>
and or is not in
Also: () [] . (dot)

But, note that the Python style guide suggests that you place blanks around binary
operators. One exception to this rule is function arguments and parameters for functions:
it is suggested that you not put blanks around the equal sign (=) used to specify keyword
arguments and default parameters.

Exercises:

1. Which of the following are single names and which are names separated by
operators?
1. fruit_collection
2. fruit-collection
Solutions:

1. Do not use a dash, or other operator, in the middle of a name:
1. fruit_collection is asingle name
2. fruit-collection is two names separated by a dash.

3.2.2 Line structure

In Python, normally we write one statement per line. In fact, Python assumes this.
Therefore:

e Statement separators are not normally needed.
e But, if we want more than one statement on a line, we use a statement separator,
specifically a semi-colon.
e And, if we want to extend a statement to a second or third line and so on, we
sometimes need to do a bit extra.
Extending a Python statement to a subsequent line -- Follow these two rules:

1. If there is an open context, nothing special need be done to extend a statement
across multiple lines. An open context is an open parenthesis, an open square
bracket, or an open curly bracket.

2. We can always extend a statement on a following line by placing a back slash as
the last character of the line.

Exercises:

1. Extend the following statement to a second line using parentheses:

total_count = tree_count + vegetable_count +
fruit_count

2. Extend the following statement to a second line using the backslash line

Page 167

www.EngineeringBooksPdf.com

A Python Book

continuation character:

total_count = tree_count + vegetable_count +
fruit_count

Solutions:

1. Parentheses create an open context that tells Python that a statement extends to
the next line:

total_count = (tree_count +
vegetable_count + fruit_count)

2. A backslash as the last character on line tells Python that the current statement
extends to the next line:

total_count = tree_count + \
vegetable_count + fruit_count

For extending a line on a subsequent line, which is better, parentheses or a backslash?
Here is a quote:

"The preferred way of wrapping long lines is by using Python's implied
line continuation inside parentheses, brackets and braces. If necessary,
you can add an extra pair of parentheses around an expression, but
sometimes using a backslash looks better."

-- PEP 8: Style Guide for Python Code --
http://www.python.org/dev/peps/pep-0008/

3.2.3 Indentation and program structure

Python uses indentation to indicate program structure. That is to say, in order to nest a
block of code inside a compound statement, you indent that nested code. This is different
from many programming languages which use some sort of begin and end markers, for
example curly brackets.

The standard coding practice for Python is to use four spaces per indentation level and to
not use hard tabs. (See the Style Guide for Python Code.) Because of this, you will want
to use a text editor that you can configure so that it will use four spaces for indentation.
See here for a list of Python-friendly text editors: PythonEditors.

Exercises:

1. Given the following, nest the print statement inside the i f statement:

if x > 0:

print x

2. Nest these two lines:

Page 168

www.EngineeringBooksPdf.com

A Python Book

z =X +y
print =z

inside the following function definition statement:

Solutions:

‘ def show_sum(x, y):

1. Indentation indicates that one statement is nested inside another statement:

2. Indentat

if x > 0:
print x

1on indicates that a block of statements is nested inside another statement:

def show_sum(x, vy):
z = X +y
print z

3.3 Execution Model

Here are a few rules:

1. Python evaluates Python code from the top of a module down to the bottom of a

module.
2. Binding

statements at top level create names (and bind values to those names) as

Python evaluates code. Further more, a name is not created until it is bound to a
value/object.

3. A nested reference to a name (for example, inside a function definition or in the
nested block of an i £ statement) is not used until that nested code is evaluated.

following code produce an error?

show_version ()
def show_version () :
print 'Version 1.0a'

Exercises:
1. Will the
2. Will the

following code produce an error?

def test () :
show_version ()

def show_version() :
print 'Version 1.0a'

test ()

3. Will the following code produce an error? Assume that show_config is not

defined:

Page 169

www.EngineeringBooksPdf.com

A Python Book

if x > 5:
show_config()

Solutions:

1. Answer: Yes, it generates an error. The name show_version would not be
created and bound to a value until the de £ function definition statement binds a
function object to it. That is done after the attempt to use (call) that object.

2. Answer: No. The function test () does call the function show_version (),
but since test () is not called until after show_version () is defined, that is
OK.

3. Answer: No. It's bad code, but in this case will not generate an error. Since x is
less than 5, the body of the if statement is not evaluated.

N.B. This example shows why it is important during testing that every line of
code in your Python program be evaluated. Here is good Pythonic advice: "If it's
not tested, it's broken."

3.4 Built-in Data Types
Each of the subsections in this section on built-in data types will have a similar structure:

1. A brief description of the data type and its uses.

2. Representation and construction -- How to represent an instance of the data type.
How to code a literal representation that creates and defines an instance. How to
create an instance of the built-in type.

3. Operators that are applicable to the data type.

4. Methods implemented and supported by the data type.

3.4.1 Numbers

The numbers you will use most commonly are likely to be integers and floats. Python
also has long integers and complex numbers.

A few facts about numbers (in Python):

e Python will convert to using a long integer automatically when needed. You do
not need to worry about exceeding the size of a (standard) integer.

e The size of the largest integer in your version of Python is in sys.maxint. To
learn what it is, do:

>>> import sys
>>> print sys.maxint
9223372036854775807

The above show the maximum size of an integer on a 64-bit version of Python.
e You can convert from integer to float by using the £1oat constructor. Example:

Page 170

www.EngineeringBooksPdf.com

A Python Book

>>> x = 25

>>> y = float (x)
>>> print y
25.0

e Python does "mixed arithmetic". You can add, multiply, and divide integers and
floats. When you do, Python "promotes" the result to a float.
3.4.1.1 Literal representations of numbers

An integer is constructed with a series of digits or the integer constructor (int (x)). Be
aware that a sequence of digits beginning with zero represents an octal value. Examples:

>>> x1 = 1234

>>> x2 = 1int ('1234")
>>> x3 = =25

>>> x1

1234

>>> x2

1234

>>> x3

-25

A float is constructed either with digits and a dot (example, 12.345) or with
engineering/scientific notation or with the float constructor (float (x)). Examples:

>>> x1 = 2.0e3
>>> x1 = 1.234
>>> x2 = —-1.234
>>> x3 = float ('1.234")
>>> x4 = 2.0e3

>>> x5 = 2.0e-3
>>> print x1, x2, x3, x4, x5
1.234 -1.234 1.234 2000.0 0.002

Exercises:
Construct these numeric values:

1. Integer zero

Floating point zero

Integer one hundred and one

Floating point one thousand

Floating point one thousand using scientific notation

Create a positive integer, a negative integer, and zero. Assign them to variables
Write several arithmetic expressions. Bind the values to variables. Use a variety
of operators, e.g. +, —, /, *, etc. Use parentheses to control operator scope.
Create several floats and assign them to variables.

Write several arithmetic expressions containing your float variables.

A

o

Page 171

www.EngineeringBooksPdf.com

A Python Book

10. Write several expressions using mixed arithmetic (integers and floats). Obtain a
float as a result of division of one integer by another; do so by explicitly
converting one integer to a float.

Solutions:

1. 0
2. 0.0,0.,0r .0

3. 101

4. 1000.0

5. 1le3orl.0e3

6. Asigning integer values to variables:

In [7]: valuel = 23
In [8]: value2 = -14
In [9]: value3 = 0
In [10]: valuel
Out[10]: 23

In [11]: wvalue2
Out[1l1l]: -14

In [12]: value3
Out[12] 0

7. Assigning expression values to variables:

valuel = 4 * (3 + 5)
value2 = (valuel / 3.0) - 2

8. Assigning floats to variables:

valuel = 0.01
value2 = -3.0
value3 = 3e-4

9. Assigning expressions containing varialbes:

valued = valuel * (value2 - value3)
valued4d = valuel + value2 + value3 - valued

10. Mixed arithmetic:

=5
8
float(x) / y

N X

You can also construct integers and floats using the class. Calling a class (using
parentheses after a class name, for example) produces an instance of the class.

Exercises:

1. Construct an integer from the string "123".

2. Construct a float from the integer 123.

3. Construct an integer from the float 12.345.
Solutions:

Page 172

www.EngineeringBooksPdf.com

A Python Book

1. Use the int data type to construct an integer instance from a string:
| int("123")

2. Use the float data type to construct a float instance from an integer:
| float (123)

3. Use the int data type to construct an integer instance from a float:

\ int (12.345) $ ——> 12

Notice that the result is truncated to the integer part.

3.4.1.2 Operators for numbers

You can use most of the familiar operators with numbers, for example:

* * %
& |
<= >=

+
<<
<

= o
°
A

//
>> ~
>

== = <>

Look here for an explanation of these operators when applied to numbers: Numeric
Types -- int, float, long, complex -- http://docs.python.org/lib/typesnumeric.html.

Some operators take precedence over others. The table in the Web page just referenced
above also shows that order of priority.

Here is a bit of that table:

All numeric types (except complex) support the following operations,

sorted by ascending priority (operations in the same box have the

same

priority; all numeric operations have a higher priority than

comparison

operations) :

Operation Result

X + vy sum of x and y

X -y difference of x and y

X *y product of x and y

x /vy quotient of x and y

x // vy (floored) quotient of x and y

X %y remainder of x / y

-X X negated

+x x unchanged

abs (x) absolute value or magnitude of x

int (x) x converted to integer

long (x) x converted to long integer

float (x) x converted to floating point

complex (re,im) a complex number with real part re, imaginary part
im. im defaults to zero.

c.conjugate () conjugate of the complex number c

Page 173

www.EngineeringBooksPdf.com

A Python Book

divmod (x, V) the pair (x // y, x % V)
pow (x, V) x to the power y
X ** vy x to the power y

Notice also that the same operator may perform a different function depending on the
data type of the value to which it is applied.

Exercises:

1. Add the numbers 3, 4, and 5.

2. Add 2 to the result of multiplying 3 by 4.

3. Add 2 plus 3 and multiply the result by 4.
Solutions:

1. Arithmetic expressions are follow standard infix algebraic syntax:

‘ 3 +4 4+ 5

2. Use another infix expression:

\ 2 + 3 % 4

Or:

\ 2 + (3 * 4)

But, in this case the parentheses are not necessary because the * operator binds
more tightly than the + operator.
3. Use parentheses to control order of evaluation:

| (2 +3) *4

Note that the * operator has precedence over (binds tighter than) the + operator,
so the parentheses are needed.
Python does mixed arithemetic. When you apply an operation to an integer and a float, it
promotes the result to the "higher" data type, a float.

If you need to perform an operation on several integers, but want use a floating point
operation, first convert one of the integers to a float using £1oat (x), which effectively
creates an instance of class float.

Try the following at your Python interactive prompt:

1. 1.0 + 2

2. 2 / 3 --Notice that the result is truncated.

3. float (2) / 3 -- Notice that the result is not truncated.
Exercises:

1. Given the following assignments:

20
50

X
Yy

Page 174

www.EngineeringBooksPdf.com

A Python Book

Divide x by y giving a float result.
Solutions:

1. Promote one of the integers to float before performing the division:

‘ z = float (x) / y

3.4.1.3 Methods on numbers

Most of the methods implemented by the data types (classes) int and f1oat are special
methods that are called through the use of operators. Special methods often have names
that begin and end with a double underscore. To see a list of the special names and a bit
of an indication of when each is called, do any of the following at the Python interactive
prompt:

>>> help (int)
>>> help (32)
>>> help (float)
>>> help(1.23)
>>> dir (1)

>>> dir(1.2)

3.4.2 Lists

Lists are a container data type that acts as a dynamic array. That is to say, a listis a
sequence that can be indexed into and that can grow and shrink.

A tuple is an index-able container, like a list, except that a tuple is immutable.
A few characteristics of lists and tuples:

e A list has a (current) length -- Get the length of a list with 1en (mylist).

e A list has an order -- The items in a list are ordered, and you can think of that
order as going from left to right.

e A list is heterogeneous -- You can insert different fypes of objects into the same
list.

e Lists are mutable, but tuples are not. Thus, the following are true of lists, but not
of tuples:
o You can extended or add to a list.
o You can shrink a list by deleting items from it.
o You can insert items into the middle of a list or at the beginning of a list. You

can add items to the end of a list.

o You can change which item is at a given position in a list.

Page 175

www.EngineeringBooksPdf.com

A Python Book

3.4.2.1 Literal representation of lists

The literal representation of a list is square brackets containing zero or more items
separated by commas.

Examples:
1.

Try these at the Python interactive prompt:

>>> [11, 22, 33]

>>> ['aa', 'bb', 'cc',]
>>> [100, 'apple', 200, 'banana',] # The last comma
is

>>> optional.

2. A list can contain lists. In fact a list can contain any kind of object:

| >>> 11, [2, 3], 4, [5 6, 7, 1, 8]

3. Lists are heterogenous, that is, different kinds of objects can be in the same list.
Here is a list that contains a number, a string, and another list:

Exercises:

1.

‘ >>> [123, 'abc', [456, 789]]

Create (define) the following tuples and lists using a literal:

©NONUL AW

A tuple of integers

A tuple of strings

A list of integers

A list of strings

A list of tuples or tuple of lists

A list of integers and strings and tuples
A tuple containing exactly one item
An empty tuple

Do each of the following:
1.
2.

et

=

eSS e

Print the length of a list.

Print each item in the list -- Iterate over the items in one of your lists. Print
each item.

Append an item to a list.

Insert an item at the beginning of a list. Insert an item in the middle of a list.
Add two lists together. Do so by using both the extend method and the plus
(+) operator. What is the difference between extending a list and adding two
lists?

Retrieve the 2nd item from one of your tuples or lists.

Retrieve the 2nd, 3rd, and 4th items (a slice) from one of your tuples or lists.
Retrieve the last (right-most) item in one of your lists.

Replace an item in a list with a new item.

Page 176

www.EngineeringBooksPdf.com

A Python Book

10. Pop one item off the end of your list.

11. Delete an item from a list.

12. Do the following list manipulations:
1. Write a function that takes two arguments, a list and an item, and that

appends the item to the list.
2. Create an empty list,
3. Call your function several times to append items to the list.
4. Then, print out each item in the list.
Solutions:

1. We can define list literals at the Python or IPython interactive prompt:
1. Create a tuple using commas, optionally with parentheses:

In [1]: al = (11, 22, 33,)
In [2]: al
out[2]: (11, 22, 33)

2. Quoted characters separated by commas create a tuple of strings:

In [3]: a2 = ('aaa', 'bbb', 'ccc')
In [4]: a2
Out[4]: ('aaa', 'bbb', 'ccc')

3. Items separated by commas inside square brackets create a list:

In [26]: a3 = [100, 200, 300,]
In [27]: a3
Out[27]: [100, 200, 300]

4. Strings separated by commas inside square brackets create a list of strings:

In [5]: a3 = ['basil', 'parsley', 'coriander']
In [6]: a3

Out[6]: ['basil', 'parsley', 'coriander']

In [7]:

5. A tuple or a list can contain tuples and lists:

In [8]: a5 = [(11, 22), (33, 44), (55,)]
In [9]: a5
Out [9]: [(11, 22), (33, 44), (55,)]

6. A list or tuple can contain items of different types:

In [10]: a6 = [101, 102, 'abc', "def", (201, 202),
('ghi', '3k1')]

In [11]: a6

Qut[11l]: [101, 102, 'abc', 'def', (201, 202),
('ghi', '3k1')]

7. In order to create a tuple containing exactly one item, we must use a comma:

In [13]: a7 = (6,)
In [14]: a7

Page 177

www.EngineeringBooksPdf.com

A Python Book

\ out[14]: (6,)

8. In order to create an empty tuple, use the tuple class/type to create an instance
of a empty tuple:

In [21]: a = tuple()

In [22]: a

out[22]: ()

In [23]: type(a)

Out [23]: <type 'tuple'>

3.4.2.2 Operators on lists

There are several operators that are applicable to lists. Here is how to find out about
them:

e Dodir([]) ordir(any_list_instance). Some of the items with
special names (leading and training double underscores) will give you clues about
operators implemented by the list type.

e Dohelp([]) orhelp(list) atthe Python interactive prompt.

e Dohelp(any_list_instance.some_method), where some_method
is one of the items listed using dir (any_list_instance).

e See Sequence Types -- str, unicode, list, tuple, buffer, xrange --
http://docs.python.org/lib/typesseq.html

Exercises:

1. Concatenate (add) two lists together.
2. Create a single list that contains the items in an initial list repeated 3 times.
3. Compare two lists.

Solutions:

1. The plus operator, applied to two lists produces a new list that is a concatenation
of two lists:

\ >>> [11, 22] + ['aa', 'bb']

2. Multiplying a list by an integer n creates a new list that repeats the original list n
times:

\ >>> [11, 'abc', 4.5] * 3

3. The comparison operators can be used to compare lists:

>>> [11, 22] == [11, 22]
>>> [11, 22] < [11, 33]

3.4.2.3 Methods on lists

Again, use dir () and help () to learn about the methods supported by lists.

Page 178

www.EngineeringBooksPdf.com

A Python Book

Examples:

1. Create two (small) lists. Extend the first list with the items in the second.
2. Append several individual items to the end of a list.
3. (a) Insert a item at the beginning of a list. (b) Insert an item somewhere in the
middle of a list.
4. Pop an item off the end of a list.
Solutions:

1. The extend method adds elements from another list, or other iterable:

>>> a = [11, 22, 33, 44,]
>>> b = [55, 66]

>>> a.extend (b)

>>> a

[11, 22, 33, 44, 55, 66]

2. Use the append method on a list to add/append an item to the end of a list:

>>> a = ['aa', 11]
>>> a.append('bb')
>>> a.append (22)
>>> a

['aa', 11, 'bb', 22]

3. The insert method on a list enables us to insert items at a given position in a

list:
>>> a = [11, 22, 33, 44,]
>>> a.insert (0, 'aa')
>>> a

['aa', 11, 22, 33, 44]

>>> a.insert (2, 'bb')

>>> a

['aa', 11, 'bb', 22, 33, 44]

But, note that we use append to add items at the end of a list.
4. The pop method on a list returns the "right-most" item from a list and removes
that item from the list:

>>> a = [11, 22, 33, 44,]
>>>

>>> b = a.pop()
>>> a

[11, 22, 33]
>>> b

44

>>> b = a.pop()
>>> a

[11, 22]

>>> Db

33

Page 179

www.EngineeringBooksPdf.com

A Python Book

Note that the append and pop methods taken together can be used to implement
a stack, that is a LIFO (last in first out) data structure.

3.4.2.4 List comprehensions

A list comprehension is a convenient way to produce a list from an iterable (a sequence
or other object that can be iterated over).

In its simplest form, a list comprehension resembles the header line of a for statement
inside square brackets. However, in a list comprehension, the for statement header is
prefixed with an expression and surrounded by square brackets. Here is a template:

‘[expr(x) for x in iterable]

where:

e expr (x) is an expression, usually, but not always, containing x.

e iterable is some iterable. An iterable may be a sequence (for example, a list, a
string, a tuple) or an unordered collection or an iterator (something over which we
can iterate or apply a for statement to).

Here is an example:

>>> a = [11, 22, 33, 44]
>>> b = [x * 2 for x in a]
>>> b

[22, 44, 66, 88]

Exercises:

1. Given the following list of strings:

‘ names = ['alice', 'bertrand', 'charlene']

produce the following lists: (1) a list of all upper case names; (2) a list of
capitalized (first letter upper case);
2. Given the following function which calculates the factorial of a number:

def t(n):
if n <= 1:
return n
else:
return n * t(n - 1)

and the following list of numbers:

‘ numbers = [2, 3, 4, 5]

create a list of the factorials of each of the numbers in the list.
Solutions:

1. For our expression in a list comprehension, use the upper and capitalize

Page 180

www.EngineeringBooksPdf.com

A Python Book

methods:
>>> names = ['alice', 'bertrand', 'charlene']
>>> [name.upper () for name in names]
['"ALICE', 'BERTRAND', 'CHARLENE']
>>> [name.capitalize () for name in names]

['Alice', 'Bertrand', 'Charlene']

2. The expression in our list comprehension calls the factorial function:

def t(n):
if n <= 1:
return n

else:
return n * t(n - 1)
def test () :
numbers = [2, 3, 4, 5]
factorials = [t(n) for n in numbers]

print 'factorials:', factorials

if _ name_ == '__main__ ':
test ()

A list comprehension can also contain an i f clause. Here is a template:

‘[expr(x) for x in iterable if pred(x)]

where:

e pred (x) is an expression that evaluates to a true/false value. Values that count
as false are numeric zero, False, None, and any empty collection. All other
values count as true.

Only values for which the if clause evaluates to true are included in creating the resulting
list.

Examples:

>>> a
>>> b
>>> b
[66, 132]

[11, 22, 33, 44]
[x * 3 for x in a if x % 2 == 0]

Exercises:

1. Given two lists, generate a list of all the strings in the first list that are not in the
second list. Here are two sample lists:

namesl = ['alice', 'bertrand', 'charlene', 'daniel']
names2 = ['bertrand', 'charlene']

Solutions:

1. The if clause of our list comprehension checks for containment in the list names2:

Page 181

www.EngineeringBooksPdf.com

A Python Book

def test () :

namesl = ['alice', 'bertrand', 'charlene',
'daniel']

names?2 = ['bertrand', 'charlene']

names3 = [name for name in namesl if name not in
names?2]

print 'names3:', names3

if _ _name_ == '_ main_ ':
test ()

When run, this script prints out the following:

‘ names3: ['alice', 'daniel']

3.4.3 Strings

A string is an ordered sequence of characters. Here are a few characteristics of strings:

e A string has a length. Get the length with the 1en () built-in function.
e A string is indexable. Get a single character at a position in a string with the
square bracket operator, for example mystring[5].
e You can retrieve a slice (sub-string) of a string with a slice operation, for example
mystring[5:8].
Create strings with single quotes or double quotes. You can put single quotes inside
double quotes and you can put double quotes inside single quotes. You can also escape
characters with a backslash.

Exercises:

1. Create a string containing a single quote.

2. Create a string containing a double quote.

3. Create a string containing both a single quote a double quote.
Solutions:

1. Create a string with double quotes to include single quotes inside the string:

‘ >>> strl = "that is jerry's ball"

2. Create a string enclosed with single quotes in order to include double quotes
inside the string:

‘ >>> strl = 'say "goodbye", bullwinkle'

3. Take your choice. Escape either the single quotes or the double quotes with a

backslash:
>>> strl = 'say "hello" to jerry\'s mom'
>>> str2 = "say \"hello\" to jerry's mom"
>>> strl
'say "hello" to jerry\'s mom'

Page 182

www.EngineeringBooksPdf.com

A Python Book

>>> str2
'say "hello" to jerry\'s mom'

Triple quotes enable you to create a string that spans multiple lines. Use three single
quotes or three double quotes to create a single quoted string.

Examples:

1. Create a triple quoted string that contains single and double quotes.
Solutions:

1. Use triple single quotes or triple double quotes to create multi-line strings:

Stringl = '''This string extends
across several lines. And, so it has
end-of-1line characters in it.

String2 = """
This string begins and ends with an end-of-line
character. It can have both 'single'

quotes and "double" quotes in it.
mmn

def test () :
print Stringl
print String2

if _ name_ == '__main__ ':
test ()

3.4.3.1 Characters

Python does not have a distinct character type. In Python, a character is a string of length
1. You can use the ord () and chr () built-in functions to convert from character to
integer and back.

Exercises:

1. Create a character "a".
2. Create a character, then obtain its integer representation.
Solutions:

1. The character "a" is a plain string of length 1:

‘ >>> x = 'a'

2. The integer equivalent of the letter "A":

>>> x = "AY
>>> ord (x)
65

Page 183

www.EngineeringBooksPdf.com

A Python Book

3.4.3.2 Operators on strings

You can concatenate strings with the "+" operator.

You can create multiple concatenated copies of a string with the "*" operator.
And, augmented assignment (+= and *=) also work.

Examples:

>>> 'cat' + ' and ' + 'dog'

'cat and dog'

>>> '#' x40

VHEH AR H A
>>>

>>> sl = 'flower'

>>> gl += 's'

>>> sl

'flowers'

Exercises:

1. Given these strings:

>>> sl = 'abcd'
>>> s2 = 'efgh'

create a new string composed of the first string followed by (concatenated with)

the second.

2. Create a single string containing 5 copies of the string 'abc’'.
Use the multiplication operator to create a "line" of 50 dashes.

4. Here are the components of a path to a file on the file system: "home",
"myusername", "Workdir", "notes.txt". Concatenate these together separating
them with the path separator to form a complete path to that file. (Note that if you
use the backslash to separate components of the path, you will need to use a
double backslash, because the backslash is the escape character in strings.

Solutions:

el

1. The plus (+) operator applied to a string can be used to concatenate strings:

>>> 53 = sl + s2
>>> 53
'abcdefgh'

2. The multiplication operator (*) applied to a string creates a new string that
concatenates a string with itself some number of times:

>>> sl = 'abc' * 5
>>> sl
'abcabcabcabcabc!

3. The multiplication operator (*) applied to a string can be used to create a

Page 184

www.EngineeringBooksPdf.com

A Python Book

"horizontal divider line":

>>> sl = '-' * 50
>>> print sl

4. The sep member of the os module gives us a platform independent way to
construct paths:

>>> import os

>>>

>>> a = ["home", "myusername", "Workdir", "notes.txt"]
>>> path = a[0] + os.sep + a[l] + os.sep + af[2] +
os.sep + al3]

>>> path

'home /myusername/Workdir/notes.txt'

And, a more concise solution:

>>> import os

>>> a = ["home", "myusername", "Workdir", "notes.txt"]
>>> os.sep.join(a)

'home/myusername/Workdir/notes.txt'

Notes:

o Note that importing the os module and then using os . sep from that module
gives us a platform independent solution.

o If you do decide to code the path separator character explicitly and if you are
on MS Windows where the path separator is the backslash, then you will need
to use a double backslash, because that character is the escape character.

3.4.3.3 Methods on strings

String support a variety of operations. You can obtain a list of these methods by using the
dir () built-in function on any string:

>>> dir (P

['_add__', '__class_ ', '__contains__ ', '__delattr__ ', '__doc__"',
' _eq ', '_ge__ ', '"__getattribute__', '__getitem_ ',

' __getnewargs_ ', '_ _getslice_ ', '_gt_ ', '__hash_', '__init_ "',
' le ', ' _len_ ', '_1t_ ', '_mod_ ', '_mul_"', '__ne_ "',

' _new__ ', '__reduce_ ', '__reduce ex ', '__repr_ ', '__rmod__',

' _rmul_ ', '_ setattr_ ', '__str_ ', 'capitalize', 'center',

'count', 'decode', 'encode', 'endswith', 'expandtabs', 'find',
'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace',
'istitle', 'isupper', 'Jjoin', 'ljust', 'lower', 'lstrip',
'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition',
'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 'strip',
'swapcase', 'title', 'translate', 'upper', 'zfill']

And, you can get help on any specific method by using the help () built-in function.
Here is an example:

Page 185

www.EngineeringBooksPdf.com

A Python Book

>>> help("".strip)
Help on built-in function strip:

strip(...)
S.strip([chars]) —-> string or unicode

Return a copy of the string S with leading and trailing

whitespace removed.

If chars is given and not None, remove characters in chars
instead.

If chars is unicode, S will be converted to unicode before
stripping

Exercises:

1. Strip all the whitespace characters off the right end of a string.

2. Center a short string within a longer string, that is, pad a short string with blank

characters on both right and left to center it.

Convert a string to all upper case.

Split a string into a list of "words".

5. (a) Join the strings in a list of strings to form a single string. (b) Ditto, but put a
newline character between each original string.

B w

Solutions:

1. The rstrip () method strips whitespace off the right side of a string:

>>> sl = 'some text \n'
>>> sl

'some text \n'

>>> s2 = sl.rstrip()

>>> 52

'some text'

2. The center (n) method centers a string within a padded string of width n:

>>> sl = 'Dave'
>>> 52 = sl.center (20)
>>> 352

Dave !

3. The upper () method produces a new string that converts all alpha characters in
the original to upper case:

>>> sl = 'Banana'
>>> sl

'Banana’

>>> s2 = sl.upper ()
>>> 52

'BANANA'

4. The split (sep) method produces a list of strings that are separated by sep in
the original string. If sep is omitted, whitespace is treated as the separator:

Page 186

www.EngineeringBooksPdf.com

A Python Book

>>> gl = """how does it feel
to be on your own
no directions known
like a rolling stone
... mwimwan
>>> words = sl.split ()
>>> words
["how', 'does', 'it', 'feel', 'to', 'be', 'on', 'your',
'own', 'no',
'directions', 'known', 'like', 'a', 'rolling', 'stone']

Note that the split () function in the re (regular expression) module is useful
when the separator is more complex than whitespace or a single character.
The join () method concatenates strings from a list of strings to form a single

string:

>>> lines = []
>>> lines.append('how does it feel')
>>> lines.append('to be on your own')
>>> lines.append('no directions known')
>>> lines.append('like a rolling stone')
>>> lines
['"how does it feel', 'to be on your own', 'no
directions known',
'like a rolling stone']

>>> sl = ''.join(lines)
>>> g2 = ' '.join(lines)
>>> s3 = '\n'.join(lines)
>>> sl

'how does it feelto be on your ownno directions
knownlike a rolling stone'’

>>> 52

'how does it feel to be on your own no directions known
like a rolling stone'

>>> 53

'how does it feel\nto be on your own\nno directions
known\nlike a rolling stone'

>>> print s3

how does it feel

to be on your own

no directions known

like a rolling stone

3.4.3.4 Raw strings

Raw strings give us a convenient way to include the backslash character in a string
without escaping (with an additional backslash). Raw strings look like plain literal

n_n

strings, but are prefixed with an "r" or "R". See String literals
http://docs.python.org/reference/lexical_analysis.html#string-literals

Excercises:

Page 187

www.EngineeringBooksPdf.com

A Python Book

1. Create a string that contains a backslash character using both plain literal string
and a raw string.
Solutions:

1. We use an "r" prefix to define a raw string:

>>> print 'abc \\ def'
abc \ def
>>> print r'abc \ def'
abc \ def

3.4.3.5 Unicode strings

Unicode strings give us a consistent way to process character data from a variety of
character encodings.

Excercises:

1. Create several unicode strings. Use both the unicode prefix character ("u") and the
unicode type (unicode (some_string)).

2. Convert a string (possibly from another non-ascii encoding) to unicode.
3. Convert a unicode string to another encoding, for example, utf-8.
4. Test a string to determine if it is unicode.
5. Create a string that contains a unicode character, that is, a character outside the
ascii character set.
Solutions:

1. We can represent unicode string with either the "u" prefix or with a call to the
unicode type:

def exercisel () :
a = u'abcd'
print a
b = unicode('efgh')
print b

2. We convert a string from another character encoding into unicode with the
decode () string method:

import sys

def exercise2():

a = 'abcd'.decode ('utf-8")

print a

b = 'abcd'.decode (sys.getdefaultencoding())
print b

3. We can convert a unicode string to another character encoding with the
encode () string method:

‘ import sys

Page 188

www.EngineeringBooksPdf.com

A Python Book

def exercise3():
a = u'abcd'
print a.encode('utf-8")
print a.encode (sys.getdefaultencoding())

4. Here are two ways to check the type of a string:

import types

def exercised () :
a = u'abcd'
print type(a) is types.UnicodeType
print type(a) is type(u'')

5. We can encode unicode characters in a string in several ways, for example, (1) by
defining a utf-8 string and converting it to unicode or (2) defining a string with an
embedded unicode character or (3) concatenating a unicode characher into a

string:
def exercise5():
utf8_string = 'Ivan Krstil\xc4\x87"'
unicode_string = utf8_string.decode ('utf-8")

print unicode_string.encode ('utf-8")

print len (utf8_string)

print len (unicode_string)

unicode_string = u'aa\u0l07bb'

print unicode_string.encode ('utf-8")
unicode_string = 'aa' + unichr (263) + 'bb'
print unicode_string.encode ('utf-8")

Guidance for use of encodings and unicode:

1. Convert/decode from an external encoding to unicode early:

‘ my_source_string.decode (encoding)

2. Do your work (Python processing) in unicode.
3. Convert/encode to an external encoding late (for example, just before saving to an
external file):

‘ my_unicode_string.encode (encoding)

For more information, see:

e Unicode In Python, Completely Demystified -- http://farmdev.com/talks/unicode/

e Unicode How-to -- http://www.amk.ca/python/howto/unicode.

e PEP 100: Python Unicode Integration --
http://www.python.org/dev/peps/pep-0100/

e 4.8 codecs -- Codec registry and base classes --
http://docs.python.org/lib/module-codecs.html

e 4.8.2 Encodings and Unicode --

Page 189

www.EngineeringBooksPdf.com

A Python Book

http://docs.python.org/lib/encodings-overview.html
e 4.8.3 Standard Encodings -- http://docs.python.org/lib/standard-encodings.html
e Converting Unicode Strings to 8-bit Strings --
http://eftbot.org/zone/unicode-convert.htm

3.4.4 Dictionaries

A dictionary is an un-ordered collection of key-value pairs.

A dictionary has a length, specifically the number of key-value pairs.
A dictionary provides fast look up by key.

The keys must be immutable object types.

3.4.4.1 Literal representation of dictionaries

Curley brackets are used to represent a dictionary. Each pair in the dictionary is
represented by a key and value separated by a colon. Multiple pairs are separated by
comas. For example, here is an empty dictionary and several dictionaries containing
key/value pairs:

In [4]: dl = {}
In [5]: d2 = {'width': 8.5, 'height': 11}
In [6]: d3 = {1: 'RED', 2: 'GREEN', 3: 'BLUE', }
In [7]: dl
out[7]: {}
In [8]: d2
Out[8]: {'height': 11, 'width': 8.5}
In [9]: d3
Out[9]: {1: 'RED', 2: 'GREEN', 3: 'BLUE'}
Notes:

e A comma after the last pair is optional. See the RED-GREEN-BLUE example
above.

e Strings and integers work as keys, since they are immutable. You might also want
to think about the use of tuples of integers as keys in a dictionary used to
represent a sparse array.

Exercises:

1. Define a dictionary that has the following key-value pairs:
2. Define a dictionary to represent the "enum" days of the week: Sunday, Monday,
Tuesday, ...
Solutions:

1. A dictionary whose keys and values are strings can be used to represent this table:

Page 190

www.EngineeringBooksPdf.com

A Python Book

vegetables = {
'Eggplant': 'Purple',
'Tomato': 'Red',
'Parsley': 'Green',
'Lemon': 'Yellow',
'Pepper': 'Green',
}

Note that the open curly bracket enables us to continue this statement across
multiple lines without using a backslash.
2. We might use strings for the names of the days of the week as keys:

DAYS = {

'Sunday': 1,
'Monday ' : 2,
'Tuesday': 3,
'Wednesday': 4,
'Thrusday': 5,
'Friday': 6,
'Saturday': 7,
}

3.4.4.2 Operators on dictionaries

Dictionaries support the following "operators":

e Length -- 1en (d) returns the number of pairs in a dictionary.
e Indexing -- You can both set and get the value associated with a key by using the

indexing operator [

1. Examples:

In [12]: d3[2]

Oout[1l2] 'GREEN"'

In [13] d3[0] = '"WHITE'
In [14] d3[0]

Out[14]: 'WHITE'

e Test for key -- The in operator tests for the existence of a key in a dictionary.

Example:
In [6]: trees = {'poplar': 'deciduous', 'cedar':
'evergreen'}
In [7]: if 'cedar' in trees:
e print 'The cedar is %s' %
(trees['cedar'],)
The cedar is evergreen
Exercises:

1. Create an empty dictionary, then use the indexing operator [] to in sert the
following name-value pairs:

‘ "yrad" ——

"255:0:0"

Page 191

www.EngineeringBooksPdf.com

A Python Book

"green" —-- "0:255:0"
"blue" -— "0:0:255"

2. Print out the number of items in your dictionary.
Solutions:

1. We can use "[]" to set the value of a key in a dictionary:

def test():
colors = {}
colors["red"] = "255:0:0"
colors["green"] = "0:255:0"
colors["blue"] = "0:0:255"
print 'The value of red is "%s"' %
(colors['red'],)
print 'The colors dictionary contains %d items.' %

(len(colors),)

test ()

When we run this, we see:

The value of red is "255:0:0"
The colors dictionary contains 3 items.

2. The len () built-in function gives us the number of items in a dictionary. See the
previous solution for an example of this.

3.4.4.3 Methods on dictionaries

Here is a table that describes the methods applicable to dictionarys:

Operation Result
len(a) the number of items in a
alk] the item of a with key k
alk]=v setalk]tov
del a[k] remove alk] from a
a.clear() remove all items from a
a.copy() a (shallow) copy of a
kina True if a has a key k, else False
k notin a equivalent to not k in a
a.has_key(k) equivalent to k in a, use that form in new code
a.items() a copy of a's list of (key, value) pair
Page 192

www.EngineeringBooksPdf.com

A Python Book

Operation

Result

a.keys()

a copy of a's list of keys

a.update([b])

updates a with key/value pairs from b, overwriting existing
keys, returns None

a.fromkeys(seq[, value])

creates a new dictionary with keys from seq and values set to
value

a.values()

a copy of a's list of values

a.get(k[, x])

alk] if k in a, else x)

a.setdefault(k[, x])

a[k] if k in a, else x (also setting it)

a.pop(k[, x])

alk] if k in a, else x (and remove k) (8)

a.popitem()

remove and return an arbitrary (key, value) pair

a.iteritems()

return an iterator over (key, value) pairs

a.iterkeys()

return an iterator over the mapping's keys

a.itervalues()

return an iterator over the mapping's values

You can also find this table at the standard documentation Web site in the "Python
Library Reference": Mapping Types -- dict http://docs.python.org/lib/typesmapping.html

Exercises:

1. Print the keys and values in the above "vegetable" dictionary.
2. Print the keys and values in the above "vegetable" dictionary with the keys in

alphabetical order.

3. Test for the occurance of a key in a dictionary.

Solutions:

1. We can use the d.items () method to retrieve a list of tuples containing
key-value pairs, then use unpacking to capture the key and value:

Vegetables = {
'Eggplant': 'Purple',
'Tomato': 'Red',
'Parsley': 'Green',
'Lemon': 'Yellow',
'Pepper': 'Green',

Page 193

www.EngineeringBooksPdf.com

A Python Book

def test () :
for key, value in Vegetables.items() :

print 'key:', key, ' value:', value

test ()

2. We retrieve a list of keys with the keys () method, the sort it with the list
sort () method:

Vegetables = {

'Eggplant': 'Purple',
'Tomato': 'Red',
'Parsley': 'Green',
'Lemon': 'Yellow',
'Pepper': 'Green',
}

def test():

keys = Vegetables.keys ()
keys.sort ()
for key in keys:

print 'key:', key, ' value:', Vegetables[key]

test ()

3. To test for the existence of a key in a dictionary, we can use either the in
operator (preferred) or the d.has_key () method (old style):

Vegetables = {
'Eggplant': 'Purple',
'Tomato': 'Red',
'Parsley': 'Green',
'Lemon': 'Yellow',
'Pepper': 'Green',

}
def test():

if 'Eggplant' in Vegetables:
print 'we have %s egplants' %
Vegetables|['Eggplant']
if 'Banana' not in Vegetables:
print 'yes we have no bananas'
if Vegetables.has_key ('Parsley') :
print 'we have leafy, %s parsley' %

Vegetables|['Parsley']

test ()

Which will print out:

we have Purple egplants
yes we have no bananas
we have leafy, Green parsley

Page 194

www.EngineeringBooksPdf.com

A Python Book

3.4.5 Files

A Python file object represents a file on a file system.

A file object open for reading a text file is iterable. When we iterate over it, it produces
the lines in the file.

A file may be opened in these modes:

e 'r'-- read mode. The file must exist.
e 'w'-- write mode. The file is created; an existing file is overwritten.
e 'a'-- append mode. An existing file is opened for writing (at the end of the file). A
file is created if it does not exist.
The open () built-in function is used to create a file object. For example, the following
code (1) opens a file for writing, then (2) for reading, then (3) for appending, and finally
(4) for reading again:

def test (infilename) :
1. Open the file in write mode, which creates the file.
outfile = open(infilename, 'w')
outfile.write('line 1\n'")
outfile.write('line 2\n"'")
outfile.write('line 3\n"'")
outfile.close ()
2. Open the file for reading.
infile = open(infilename, 'r')
for line in infile:
print 'Line:', line.rstrip/()
infile.close ()
3. Open the file in append mode, and add a line to the end of
the file.
outfile = open(infilename, 'a')
outfile.write('line 4\n"'")
outfile.close()

print '-' * 40
4. Open the file in read mode once more.
infile = open(infilename, 'r')

for line in infile:
print 'Line:', line.rstrip()
infile.close ()

test ("tmp.txt")

Exercises:

1. Open a text file for reading, then read the entire file as a single string, and then
split the content on newline characters.

2. Open a text file for reading, then read the entire file as a list of strings, where each
string is one line in the file.

3. Open a text file for reading, then iterate of each line in the file and print it out.

Page 195

www.EngineeringBooksPdf.com

Solutions:

1.

A Python Book

Use the open () built-in function to open the file and create a file object. Use the
read () method on the file object to read the entire file. Use the split () or
splitlines () methods to split the file into lines:

>>> infile = open('tmp.txt', 'r')
>>> content = infile.read()

>>> infile.close ()

>>> lines = content.splitlines/()

>>> print lines
['line 1', 'line 2', 'line 3', '']

The £.readlines () method returns a list of lines in a file:

>>> infile = open('tmp.txt', 'r')
>>> lines = infile.readlines /()

>>> infile.close()

>>> print lines

['"line 1\n', 'line 2\n', 'line 3\n']

Since a file object (open for reading) is itself an iterator, we can iterate over it in a
for statement:

mmn

Test iteration over a text file.
Usage:
python test.py in_file_ name

mmn

import sys

def test (infilename) :
infile = open(infilename, 'r')
for line in infile:
Strip off the new-line character and any
whitespace on
the right.

line = line.rstrip()
Print only non-blank lines.
if line:

print line
infile.close ()

def main () :
args = sys.argv[l:]
if len(args) != 1:
print __doc_
sys.exit (1)
infilename = args[0]
test (infilename)
if __ name_ == '_ main___
main ()

L

Page 196

www.EngineeringBooksPdf.com

A Python Book

Notes:

o The last two lines of this solution check the _ _name___ attribute of the
module itself so that the module will run as a script but will nof run when the
module is imported by another module.

o The __doc___ attribute of the module gives us the module's doc-string, which
is the string defined at the top of the module.

o sys.argv gives us the command line. And, sys.argv[1:] chops off the
program name, leaving us with the comman line arguments.

3.4.6 A few miscellaneous data types

3.4.6.1 None

None is a singleton. There is only one instance of None. Use this value to indicate the
absence of any other "real" value.

Test for None with the identity operator is.
Exercises:

1. Create a list, some of whose elements are None. Then write a for loop that
counts the number of occurances of None in the list.
Solutions:

1. The identity operators is and is not can be used to test for None:

>>> a = [1l1, None, 'abc', None, {}]
>>> a

[11, None, 'abc', None, {}]

>>> count = 0

>>> for item in a:
if item is None:
count += 1
>>>
>>> print count
2

3.4.6.2 The booleans True and False

Python has the two boolean values True and False. Many comparison operators return
True and False.

Examples:

1. What value is returned by 3 > 27
Answer: The boolean value True.
2. Given these variable definitions:

Page 197

www.EngineeringBooksPdf.com

A Python Book

x = 3
y = 4
z = 5

What does the following print out:

‘ print y > x and z > y

Answer -- Prints out "True"

3.5 Statements

3.5.1 Assignment statement
The assignment statement uses the assignment operator =.

The assignment statement is a binding statement: it binds a value to a name within a
namespace.

Exercises:

1. Bind the value "eggplant" to the variable vegetable.
Solutions:

1. The = operator is an assignment statement that binds a value to a variable:

‘>>> vegetable = "eggplant"
There is also augmented assignment using the operators +=, —=, *=, /=, etc.
Exercises:

1. Use augmented assignment to increment the value of an integer.

2. Use augmented assignment to append characters to the end of a string.

3. Use augmented assignment to append the items in one list to another.

4. Use augmented assignment to decrement a variable containing an integer by 1.
Solutions:

1. The += operator increments the value of an integer:

>>> count = 0
>>> count += 1
>>> count

1

>>> count += 1
>>> count

2

2. The += operator appends characters to the end of a string:

>>> buffer = 'abcde'
>>> buffer += 'fgh'

Page 198

www.EngineeringBooksPdf.com

A Python Book

>>> buffer
'abcdefgh'

3. The += operator appends items in one list to another:

In [20]: a = [11, 22, 33]

In [21]: b = [44, 55]

In [22]: a += Db

In [23] a

Oout [23] [11, 22, 33, 44, 55]

1. The —= operator decrements the value of an integer:

>>> count = 5
>>> count

5

>>> count —-= 1
>>> count

4

You can also assign a value to (1) an element of a list, (2) an item in a dictionary, (3) an
attribute of an object, etc.

Exercises:

1. Create a list of three items, then assign a new value to the 2nd element in the list.

2. Create a dictionary, then assign values to the keys "vegetable" and "fruit" in that
dictionary.

3. Use the following code to create an instance of a class:

class A(object):
pass
a = A()

Then assign values to an attribue named category in that instance.
Solutions:

1. Assignment with the indexing operator [] assigns a value to an element in a list:

>>> trees = ['pine', 'oak', 'elm']
>>> trees

['pine', 'oak', 'elm']

>>> trees([l] = 'cedar'

>>> trees

['pine', 'cedar', 'elm']

2. Assignment with the indexing operator [] assigns a value to an item (a key-value
pair) in a dictionary:

>>> foods = {}

>>> foods

{}

>>> foods|['vegetable'] = 'green beans'
>>> foods['fruit'] = 'nectarine'

>>> foods

Page 199

www.EngineeringBooksPdf.com

A Python Book

‘ {'vegetable': 'green beans', 'fruit': 'nectarine'}

3. Assignment along with the dereferencing operator . (dot) enables us to assign a
value to an attribute of an object:

>>> class A (object):
pass

>>> a = A()

>>> a.category = 25

>>> a._ dict_

{'category': 25}

>>> a.category

25

3.5.2 print statement

Warning: Be aware that the print statement will go away in Python version 3.0. It will
be replaced by the built-in print () function.

The print statement sends output to standard output. It provides a somewhat more
convenient way of producing output than using sys.stdout .write ().

The print statement takes a series of zero or more objects separated by commas. Zero
objects produces a blank line.

The print statement normally adds a newline at the end of its output. To eliminate that,
add a comma at the end.

Exercises:

1. Print a single string.

2. Print three strings using a single print statement.

3. Given a variable name containing a string, print out the string My name 1is
"xxxx" ., where xxxx is replace by the value of name. Use the string formatting
operator.

Solutions:

1. We can print a literal string:

>>> print 'Hello, there'
Hello, there

2. We can print literals and the value of variables:

>>> description = 'cute'
>>> print 'I am a', description, 'kid.'
I am a cute kid.

3. The string formatting operator gives more control over formatting output:

‘ >>> name = 'Alice'

Page 200

www.EngineeringBooksPdf.com

A Python Book

Q

>>> print 'My name is "%s".' % (name,)
My name is "Alice".

3.5.3 if: statement exercises

The 1if statement is a compound statement that enables us to conditionally execute
blocks of code.

The if statement also has optional e1lif: and else: clauses.

The condition inan 1 f: or elif: clause can be any Python expression, in other words,
something that returns a value (even if that value is None).

In the conditioninan 1 £: or elif: clause, the following values count as "false":

False

None

Numeric zero

An empty collection, for example an empty list or dictionary
e An empty string (a string of length zero)

All other values count as true.

Exercises:

1. Given the following list:

‘ >>> bananas = ['bananal', 'banana2', 'banana3',]

Print one message if it is an empty list and another messge if it is not.
2. Here is one way of defining a Python equivalent of an "enum":

\ NO_COLOR, RED, GREEN, BLUE = range (4)

Write an if: statement which implements the effect of a "switch" statement in
Python. Print out a unique message for each color.
Solutions:

1. We can test for an empty or non-empty list:

>>> bananas = ['bananal', 'banana2', 'banana3',]
>>> if not bananas:
print 'yes, we have no bananas'
else:
print 'yes, we have bananas'

yes, we have bananas

2. We can simulate a "switch" statement using if:elif:

NO_COLOR, RED, GREEN, BLUE = range (4)

def test (color):

Page 201

www.EngineeringBooksPdf.com

A Python Book

if color == RED:
print "It's red."
elif color == GREEN:
print "It's green."
elif color == BLUE:
print "It's blue."

def main () :
color = BLUE
test (color)

if name == ' main :
main ()

Which, when run prints out the following:

‘ It's blue.

3.5.4 for: statement exercises

The for: statement is the Python way to iterate over and process the elements of a
collection or other iterable.

The basic form of the for: statement is the following:

for X in Y:
statement
o
o
o

where:

e X is something that can be assigned to. It is something to which Python can bind a

value.
e Y is some collection or other iterable.
Exercises:

1. Create a list of integers. Use a for : statement to print out each integer in the list.
2. Create a string. print out each character in the string.
Solutions:

1. The for: statement can iterate over the items in a list:

In [13]: a = [11, 22, 33, 1
In [14]: for value in a:
cee print 'value: %d' % value

value: 11
value: 22
value: 33

Page 202

www.EngineeringBooksPdf.com

A Python Book

2. The for: statement can iterate over the characters in a string:

In [16]: b = 'chocolate'
In [17]: for chrl in b:
NP print 'character: %s' % chrl

character:
character:
character:
character:
character:
character:
character:
character:
character:

O ct® H—~OQO oA

Notes:
o In the solution, I used the variable name chr1 rather than chr so as not to
over-write the name of the built-in function chr ().
When we need a sequential index, we can use the range () built-in function to create a
list of integers. And, the xrange () built-in function produces an interator that produces
a sequence of integers without creating the entire list. To iterate over a large sequence of
integers, use xrange () instead of range ().

Exercises:

1. Print out the integers from O to 5 in sequence.
2. Compute the sum of all the integers from 0 to 99999.
3. Given the following generator function:

import urllib

Urls = [

'http://yahoo.com',

'http://python.org',

'http://gimp.org', # The GNU image manipulation
program

]

def walk (url_1list):
for url in url_list:
f = urllib.urlopen (url)
stuff = f.read()
f.close ()
yield stuff

Write a for: statement that uses this iterator generator to print the lengths of the
content at each of the Web pages in that list.
Solutions:

1. The range () built-in function gives us a sequence to iterate over:

Page 203

www.EngineeringBooksPdf.com

A Python Book

In [5]: for idx in range(6) :

print 'idx: %d'

o

<)

°

idx

idx:
idx:
idx:
idx:
idx:
idx:

B WN R O « -

2. Since that sequence is a bit large, we'll use xrange () instead of range () :

In [8]: count = 0

In [9]: for n in xrange (100000) :
: count += n

In [10]: count

OQut [10]: 4999950000

3. The for: statement enables us to iterate over iterables as well as collections:

import urllib
Urls = [
'http://yahoo.com',
'http://python.org',
'http://gimp.org’',
program

]

The GNU image manipulation

def walk (url_1list):
for url in url_list:

f = urllib.urlopen (url)
stuff = f.read()
f.close ()

yield stuff

def test () :
for url in walk (Urls) :
print 'length: %d' % (len(url),)
if _ name_ == '_ _main__ ':
test ()

When I ran this script, it prints the following:

length:
length:
length:

9562
16341
12343

If you need an index while iterating over a sequence, consider using the enumerate ()

built-in function.

Page 204

www.EngineeringBooksPdf.com

A Python Book

Exercises:

1. Given the following two lists of integers of the same length:

a = [lr 2/ 3/ 4/ 5]
b = [100, 200, 300, 400, 500]

Add the values in the first list to the corresponding values in the second list.
Solutions:

1. The enumerate () built-in function gives us an index and values from a
sequence. Since enumerate () gives us an interator that produces a sequence of
two-tuples, we can unpack those tuples into index and value variables in the
header line of the for statement:

In [13]: a = [1, 2, 3, 4, 5]

In [14]: b = [100, 200, 300, 400, 500]

In [15]:

In [16]: for idx, value in enumerate (a):
50008 b[idx] += value

In [17]: b

Oout[17] [101, 202, 303, 404, 505]

3.5.5 while: statement exercises
A while: statement executes a block of code repeatedly as long as a condition is true.

Here is a template for the while: statement:

while condition:
statement
o
o
¢)

Where:

e condition is an expression. The expression is something that returns a value
which can be interpreted as true or false.
Exercises:

1. Write a while: loop that doubles all the values in a list of integers.
Solutions:

1. Awhile: loop with an index variable can be used to modify each element of a
list:

def test_while () :
numbers = [11, 22, 33, 44,]

print 'before: %s' (numbers,)

Page 205

www.EngineeringBooksPdf.com

A Python Book

idx = 0

while idx < len (numbers) :
numbers [idx] *= 2
idx += 1

print 'after: %$s' % (numbers,)

But, notice that this task is easier using the for : statement and the built-in
enumerate () function:

def test_for():
numbers = [11, 22, 33, 44,]
print 'before: %$s' % (numbers,)
for idx, item in enumerate (numbers) :
numbers [1idx] *= 2

print 'after: %$s' % (numbers,)

3.5.6 break and continue statements

The continue statement skips the remainder of the statements in the body of a loop
and starts immediately at the top of the loop again.

A break statement in the body of a loop terminates the loop. It exits from the
immediately containing loop.

break and continue can be used in both for: and while: statements.
Exercises:

1. Write a for: loop that takes a list of integers and triples each integer that is even.
Use the cont inue statement.
2. Write a loop that takes a list of integers and computes the sum of all the integers
up until a zero is found in the list. Use the break statement.
Solutions:

1. The continue statement enables us to "skip" items that satisfy a condition or
test:

def test () :
numbers = [11, 22, 33, 44, 55, 66,]
print 'before: %s' $ (numbers,)
for idx, item in enumerate (numbers) :
if item % 2 != 0:
continue
numbers [idx] *= 3
print 'after: %$s' % (numbers,)

test ()

2. The break statement enables us to exit from a loop when we find a zero:

def test () :
numbers = [11, 22, 33, 0, 44, 55, 66, |

Page 206

www.EngineeringBooksPdf.com

A Python Book

print 'numbers: %s' $ (numbers,)
sum = 0
for item in numbers:
if item ==
break
sum += item
print '

[}

sum: %d' % (sum,)

test ()

3.5.7 Exceptions and the try:except: and raise statements

The try:except : statement enables us to catch an exception that is thrown from
within a block of code, or from code called from any depth withing that block.

The raise statement enables us to throw an exception.

An exception is a class or an instance of an exception class. If an exception is not caught,
it results in a traceback and termination of the program.

There is a set of standard exceptions. You can learn about them here: Built-in Exceptions
-- http://docs.python.org/lib/module-exceptions.html.

You can define your own exception classes. To do so, create an empty subclass of the
class Exception. Defining your own exception will enable you (or others) to throw
and then catch that specific exception type while ignore others exceptions.

Exercises:

1. Write a try:except : statement that attempts to open a file for reading and
catches the exception thrown when the file does not exist.
Question: How do you find out the name of the exception that is thrown for an
input/output error such as the failure to open a file?

2. Define an exception class. Then write a try : except : statement in which you
throw and catch that specific exception.

3. Define an exception class and use it to implement a multi-level break from an
inner loop, by-passing an outer loop.

Solutions:

1. Use the Python interactive interpreter to learn the exception type thrown when a
I/O error occurs. Example:

>>> infile = open('xx_nothing_ yy.txt', 'r'")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IOError: [Errno 2] No such file or directory:
'xx_nothing__yy.txt'

>>>

Page 207

www.EngineeringBooksPdf.com

A Python Book

In this case, the exception type is IOError.
Now, write a try : except : block which catches that exception:

def test():
infilename = 'nothing noplace.txt'
try:
infile = open(infilename, 'r')

for line in infile:
print line
except IOError, exp:
print 'cannot open file "%s"' % infilename

test ()

2. We define a exception class as a sub-class of class Except ion, then throw it
(with the raise statement) and catch it (with a try : except : statement):

class SizeError (Exception) :
pass

def test_exception(size):
try:
if size <= 0:
raise SizeError, 'size must be greater than
zero'
Produce a different error to show that it
will not be caught.
X =Yy
except SizeError, exp:
print '$s' % (exp,)
print 'goodbye'

def test () :
test_exception (-1)
print '-' * 40

test_exception (1)

test ()

When we run this script, it produces the following output:

$ python workbook027.py
size must be greater than zero
goodbye
Traceback (most recent call last):
File "workbook027.py", line 20, in <module>
test ()
File "workbook027.py", line 18, in test
test_exception (1)
File "workbook027.py", line 10, in test_exception
X =Y
NameError: global name 'y' is not defined

Page 208

www.EngineeringBooksPdf.com

A Python Book

Notes:
o Our except: clause caught the SizeError, but allowed the NameError
to be uncaught.
3. We define a sub-class of of class Exception, then raise it in an inner loop and
catch it outside of an outer loop:

class BreakExceptionl (Exception) :

pass
def test () :
a = [11, 22, 33, 44, 55, 66, 1
b = [111, 222, 333, 444, 555, 666,]
try:
for x in a:
print 'outer —- x: %d' % x
for y in b:

if x > 22 and y > 444:
raise BreakExceptionl ('leaving
inner loop"')

print 'inner -- y: %d' % y
print 'outer -- after'
print '-' * 40
except BreakExceptionl, exp:
print 'out of loop ——- exp: %s' % exp

test ()

Here is what this prints out when run:

outer —— x: 11
inner -- y: 111
inner —— y: 222
inner —-- y: 333
inner —— y: 444
inner —- y: 555
inner -- y: 666
outer —-- after
outer —— x: 22
inner —— y: 111
inner —-- y: 222
inner —- y: 333
inner —- y: 444
inner —-- y: 555
inner -- y: 666
outer —- after
outer ——- x: 33
inner —- y: 111
inner ——- y: 222
inner —-- y: 333
inner -- y: 444
out of loop —-- exp: leaving inner loop

Page 209

www.EngineeringBooksPdf.com

A Python Book

3.6 Functions

A function has these characteristics:

It groups a block of code together so that we can call it by name.

It enables us to pass values into the the function when we call it.

It can returns a value (even if None).

When a function is called, it has its own namespace. Variables in the function are
local to the function (and disappear when the function exits).

A function is defined with the de f : statement. Here is a simple example/template:

def function_name (argl, arg?2):

local _varl = argl + 1
local_var2 = arg2 * 2
return local_varl + local_var2

And, here is an example of calling this function:

‘result = function_name (1, 2)

Here are a few notes of explanation:

e The above defines a function whose name is function_ name.

e The function function_name has two arguments. That means that we can and
must pass in exactly two values when we call it.

e This function has two local variables, 1ocal_varl and local_var?2. These
variables are local in the sense that after we call this function, these two variables
are not available in the location of the caller.

e When we call this function, it returns one value, specifically the sum of
local_varl and local_var?2.

Exercises:

1. Write a function that takes a list of integers as an argument, and returns the sum

of the integers in that list.
Solutions:
1. The return statement enables us to return a value from a function:

def list_sum(values) :
sum = 0O
for value in values:
sum += value
return sum

def test () :
a = [11, 22, 33, 44,]
print list_sum(a)

if name == ' _ main J g

Page 210

www.EngineeringBooksPdf.com

A Python Book

‘ test ()

3.6.1 Optional arguments and default values
You can provide a default value for an argument to a function.

If you do, that argument is optional (when the function is called).
Here are a few things to learn about optional arguments:

e Provide a default value with an equal sign and a value. Example:

‘ def sample_func(argl, arg2, arg3='empty', arg4=0):

e All parameters with default values must be after (to the right of) normal
parameters.

e Do not use a mutable object as a default value. Because the de f : statement is
evaluated only once and not each time the function is called, the mutable object
might be shared across multiple calls to the function. Do not do this:

‘ def sample_func(argl, arg2=[]):

Instead, do this:

def sample_func (argl, arg2=None) :
if arg2 is None:
arg2 = []

Here is an example that illustrates how this might go wrong:

def adder(a, b=[]):
b.append(a)
return b

def test () :
print adder('aaa')
print adder ('bbb')
print adder ('ccc')

test ()

Which, when executed, displays the following:

['aaa']
['aaa', 'bbb']
['aaa', 'bbb', 'ccc']

Exercises:

1. Write a function that writes a string to a file. The function takes two arguments:
(1) a file that is open for output and (2) a string. Give the second argument (the
string) a default value so that when the second argument is omitted, an empty,
blank line is written to the file.

Page 211

www.EngineeringBooksPdf.com

A Python Book

2. Write a function that takes the following arguments: (1) a name, (2) a value, and
(3) and optional dictionary. The function adds the value to the dictionary using the
name as a key in the dictionary.
Solutions:

1. We can pass a file as we would any other object. And, we can use a newline
character as a default parameter value:

import sys

def writer (outfile, msg='\n"'):
outfile.write (msqg)

def test () :
writer (sys.stdout, 'aaaaa\n')
writer (sys.stdout)
writer (sys.stdout, 'bbbbb\n')

test ()

When run from the command line, this prints out the following:

aaaaa

bbbbb

2. In this solution we are careful not to use a mutable object as a default value:

def add_to_dict (name, value, dic=None) :
if dic is None:
dic = {}
dic[name] = wvalue
return dic

def test () :
dicl = {'albert': 'cute', }
print add_to_dict ('barry', 'funny', dicl)
print add_to_dict ('charlene', 'smart', dicl)
print add_to_dict ('darryl', 'outrageous')
print add_to_dict ('eddie', 'friendly')

ENY— NN

test ()

If we run this script, we see:

{'barry': 'funny', 'albert': 'cute'}

{'barry': '"funny', 'albert': 'cute', 'charlene':
'smart'}

{'darryl': 'outrageous'}

{'eddie': '"friendly'}

Notes:
o It's important that the default value for the dictionary is None rather than an
empty dictionary, for example ({ }). Remember that the de f : statement is

Page 212

www.EngineeringBooksPdf.com

A Python Book

evaluated only once, which results in a single dictionary, which would be
shared by all callers that do not provide a dictionary as an argument.

3.6.2 Passing functions as arguments

A function, like any other object, can be passed as an argument to a function. This is due
the the fact that almost all (maybe all) objects in Python are "first class objects". A first
class object is one which we can:

1. Store in a data structure (e.g. a list, a dictionary, ...).
2. Pass to a function.
3. Return from a function.

Exercises:

1. Write a function that takes three arguments: (1) an input file, (2) an output file,
and (3) a filter function:
o Argument 1 is a file opened for reading.
o Argument 2 is a file opened for writing.
o Argument 3 is a function that takes a single argument (a string), performs a

transformation on that string, and returns the transformed string.
The above function should read each line in the input text file, pass that line
through the filter function, then write that (possibly) transformed line to the
output file.
Now, write one or more "filter functions" that can be passed to the function
described above.
Solutions:

1. This script adds or removes comment characters to the lines of a file:

import sys

def filter (infile, outfile, filterfunc):
for line in infile:
line = filterfunc (line)
outfile.write(line)

def add_comment (line) :
line = '"## %s' % (line,)
return line

def remove_comment (line) :
if line.startswith ('"## ') :
line = line[3:]
return line

def main() :
filter (sys.stdin, sys.stdout, add_comment)

Page 213

www.EngineeringBooksPdf.com

A Python Book

if name == ' main '

main ()

Running this might produce something like the following (note for MS Windows
users: use type instead of cat):

S cat tmp.txt

line 1

line 2

line 3

$ cat tmp.txt | python workbook005.py
line 1

line 2

line 3

3.6.3 Extra args and keyword args

Additional positional arguments passed to a function that are not specified in the function
definition (the de f : statement), are collected in an argument preceded by a single
asterisk. Keyword arguments passed to a function that are not specified in the function
definition can be collected in a dictionary and passed to an argument preceded by a
double asterisk.

Examples:

1. Write a function that takes one positional argument, one argument with a default
value, and also extra args and keyword args.
2. Write a function that passes all its arguments, no matter how many, to a call to
another function.
Solutions:

1. Weuse *args and **kwargs to collect extra arguments and extra keyword
arguments:

def show_args(x, y=-1, *args, **kwargs):
print '-' * 40
print 'x:', x
print 'y:', vy
print 'args:', args

print 'kwargs:', kwargs

def test () :

4
5, 6, 7, 8)

show_args (4,
1, y=44, a=55, b=66)

(
(
show_args (
(
show_args (

test ()

Page 214

www.EngineeringBooksPdf.com

A Python Book

Running this script produces the following:

S python workbook006.py

args:
kwargs: {}

x: 11

y: 44

args: ()

kwargs: 'b':

{'a': 55,

Notes:
o The spelling of args and kwargs is not fixed, but the
2. Weuse args and kwargs to catch and pass on all arguments:

def funcl (*args, **kwargs):
print 'args: %$s' % (args,)
print 'kwargs: %$s' % (kwargs,)
def func2(*args, **kwargs):
print 'before'
funcl (*args, **kwargs)
print 'after'
def test () :
func2 ('aaa', 'bbb', 'ccc', argl='ddd',

test ()

arg2='eee')

When we run this, it prints the following:

before
args: ('aaa', 'bbb', 'ccc')
kwargs: {'argl': 'ddd', 'arg2': 'eee'}
after
Page 215

www.EngineeringBooksPdf.com

A Python Book

Notes:

o In a function call, the * operator unrolls a list into individual positional
arguments, and the * * operator unrolls a dictionary into individual keyword
arguments.

3.6.3.1 Order of arguments (positional, extra, and keyword args)
In a function definition, arguments must appear in the following order, from left to right:

1. Positional (normal, plain) arguments
2. Arguments with default values, if any
3. Extra arguments parameter (proceded by single asterisk), if present
4. Keyword arguments parameter (proceded by double asterisk), if present
In a function call, arguments must appear in the following order, from left to right:

1. Positional (plain) arguments
2. Extra arguments, if present
3. Keyword arguments, if present

3.6.4 Functions and duck-typing and polymorphism

If the arguments and return value of a function satisfy some description, then we can say
that the function is polymorphic with respect to that description.

If the some of the methods of an object satisfy some description, then we can say that the
object is polymorphic with respect to that description.

Basically, what this does is to enable us to use a function or an object anywhere that
function satisfies the requirements given by a description.

Exercises:

1. Implement a function that takes two arguments: a function and an object. It
applies the function argument to the object.
2. Implement a function that takes two arguments: a list of functions and an object.
It applies each function in the list to the argument.
Solutions:

1. We can pass a function as an argument to a function:

def fancy (obj) :
print 'fancy fancy —-- %s —-- fancy fancy' % (ob3j,)

def plain(obj):
print 'plain -- %s -- plain' % (obj,)

def show (func, obj):
func (obj)

Page 216

www.EngineeringBooksPdf.com

A Python Book

def main() :
a = {'aa': 11, 'bb': 22, }
show (fancy, a)
show (plain, a)

if name == main 9

main ()

2. We can also put functions (function objects) in a data structure (for example, a
list), and then pass that data structure to a function:

def fancy (obj) :
print 'fancy fancy -- %s -- fancy fancy' % (obj,)

def plain(obj) :
print 'plain -- %s —-- plain' % (obj,)

Func_list = [fancy, plain,]

def show (funcs, obj):
for func in funcs:
func (obj)

def main () :
a = {'aa': 11, 'bb': 22, }
show (Func_1list, a)

if _ name_ ==
main ()

Notice that Python supports polymorphism (with or) without inheritance. This type of
polymorphism is enabled by what is called duck-typing. For more on this see: Duck
typing -- http://en.wikipedia.org/wiki/Duck_typing at Wikipedia.

3.6.5 Recursive functions
A recursive function is a function that calls itself.
A recursive function must have a limiting condition, or else it will loop endlessly.

Each recursive call consumes space on the function call stack. Therefore, the number of
recursions must have some reasonable upper bound.

Exercises:

1. Write a recursive function that prints information about each node in the
following tree-structure data structure:

Tree = {
'name': 'animals',
'left_branch': {

Page 217

www.EngineeringBooksPdf.com

A Python Book

'name': 'birds',
'left_branch': {
'name': 'seed eaters',
'left_branch': {
'name': 'house finch',
'left_branch': None,
'right_branch': None,

b
'right_branch': {
'name': 'white crowned sparrow',
'left_branch': None,
'right_branch': None,
b
}o
'right_branch': {
'name': 'insect eaters',
'left_branch': {
'name': 'hermit thrush',
'left_branch': None,
'right_branch': None,
b
'right_branch': {
'name': 'black headed phoebe',
'left_branch': None,
'right_branch': None,
by
b
b
'right_branch': None,

Solutions:

1. We write a recursive function to walk the whole tree. The recursive function calls
itself to process each child of a node in the tree:

Tree = {
'name': 'animals',
'left_branch': {
'name': 'birds',
'left_branch': {
'name': 'seed eaters’',
'left_branch': {
'name': 'house finch',

'left_branch': None,
'right_branch': None,

b

'right_branch': {
'name': 'white crowned sparrow',
'left_branch': None,
'right_branch': None,

b

y

Page 218

www.EngineeringBooksPdf.com

A Python Book

'right_branch': {
'name': 'insect eaters’',
'left_branch': {
'name': 'hermit thrush',
'left_branch': None,
'right_branch': None,
by
'right_branch': {
'name': 'black headed phoebe',
'left_branch': None,
'right_branch': None,
b
b
b
'right_branch': None,

}

Indents = [' ' * idx for idx in range (10)]

def walk_and_show (node, level=0) :
if node is None:
return
print '%sname: %$s' % (Indents[level], node['name'],
level += 1
walk_and_show (node['left_branch'], level)
walk_and_show (node['right_branch'], level)

def test () :
walk_and_show (Tree)

if _ name_ == '_ _main__ ':
test ()

Notes:

o Later, you will learn how to create equivalent data structures using classes and
OOP (object-oriented programming). For more on that see Recursive calls to
methods in this document.

3.6.6 Generators and iterators

The "iterator protocol" defines what an iterator object must do in order to be usable in an
"iterator context" such as a for statement. The iterator protocol is described in the
standard library reference: Iterator Types -- http://docs.python.org/lib/typeiter.html

An easy way to define an object that obeys the iterator protocol is to write a generator
function. A generator function is a function that contains one or more yield statements.
If a function contains at least one yield statement, then that function when called,
returns generator iterator, which is an object that obeys the iterator protocol, i.e. it's an
iterator object.

Page 219

www.EngineeringBooksPdf.com

A Python Book

Note that in recent versions of Python, yield is an expression. This enables the consumer
to communicate back with the producer (the generator iterator). For more on this, see
PEP: 342 Coroutines via Enhanced Generators -
http://www.python.org/dev/peps/pep-0342/.

Exercises:

1. Implement a generator function -- The generator produced should yield all
values from a list/iterable that satisfy a predicate. It should apply the transforms
before return each value. The function takes these arguments:

1. values -- A list of values. Actually, it could be any iterable.

2. predicate -- A function that takes a single argument, performs a test on
that value, and returns True or False.

3. transforms -- (optional) A list of functions. Apply each function in this list
and returns the resulting value. So, for example, if the function is called like
this:

| result = transforms([11, 22], p, [f, gl) |

then the resulting generator might return:
[g(£(11)) |

2. Implement a generator function that takes a list of URLSs as its argument and
generates the contents of each Web page, one by one (that is, it produces a
sequence of strings, the HTML page contents).

Solutions:

1. Here is the implementation of a function which contains yield, and, therefore,
produces a generator:

#!/usr/bin/env python

mmn

filter_ and_transform

filter _and_transform(content, test_func,
transforms=None)

Return a generator that returns items from content
after applying

the functions in transforms if the item satisfies
test_func .

Arguments:
1. ““values = —-—- A list of values
2. " “predicate’’ -- A function that takes a single

argument,
performs a test on that wvalue, and returns True

Page 220

www.EngineeringBooksPdf.com

A Python Book

or False.
3. " “transforms' = -- (optional) A list of functions.

Apply each

function in this list and returns the resulting
value. So,

for example, if the function is called like
this::

result = filter_and_transforms([11, 221, p, [f,
gl)

then the resulting generator might return::

g(£(11))

mmn

def filter_and_transform(content, test_func,
transforms=None) :
for x in content:
if test_func(x):
if transforms is None:
yield x
elif isiterable(transforms) :
for func in transforms:
x = func (x)
yield x
else:
yield transforms (x)

def isiterable (x):
flag = True
try:
X = iter (x)
except TypeError, exp:
flag = False
return flag

def iseven (n) :

[

return n % 2 == 0

def f(n):
return n * 2

def g(n):
return n ** 2
def test () :
datal = [11, 22, 33, 44, 55, 66, 77, 1]

for val in filter_and_transform(datal, iseven, f):
print 'val: %d' % (val,)

print '-' * 40

for val in filter_and_transform(datal, iseven, [f,

Page 221

www.EngineeringBooksPdf.com

A Python Book

agl)
print 'val: %d' % (val,)
print '-' * 40
for val in filter_and_transform(datal, iseven):
print 'val: %d' % (val,)
if _ name_ == '__main__ ':
test ()

Notes:

o Because function filter_and_transform contains yield, when
called, it returns an iterator object, which we can use in a for statement.

o The second parameter of function filter_and_transform takes any
function which takes a single argument and returns True or False. This is an
example of polymorphism and "duck typing" (see Duck Typing --
http://en.wikipedia.org/wiki/Duck_typing). An analogous claim can be made
about the third parameter.

2. The following function uses the ur11ib module and the yield function to
generate the contents of a sequence of Web pages:

import urllib

Urls = [

'http://yahoo.com',

'http://python.org',

'http://gimp.org’', # The GNU image manipulation
program

]

def walk (url_1list):
for url in url_list:
f = urllib.urlopen (url)
stuff = f.ready()
f.close ()
yield stuff

def test () :
for x in walk (Urls) :
print 'length: %d' % (len(x),)

if _ name_ == '__main__ ':
test ()

When I run this, I see:

S python generator_example.py
length: 9554
length: 16748
length: 11487

Page 222

www.EngineeringBooksPdf.com

A Python Book

3.7 Object-oriented programming and classes

Classes provide Python's way to define new data types and to do OOP (object-oriented
programming).

If you have made it this far, you have already used lots of objects. You have been a
"consumer" of objects and their services. Now, you will learn how to define and
implement new kinds of objects. You will become a "producer” of objects. You will
define new classes and you will implement the capabilities (methods) of each new class.

A class is defined with the c1ass statement. The first line of a c1ass statement is a
header (it has a colon at the end), and it specifies the name of the class being defined and
an (optional) superclass. And that header introduces a compound statement: specifically,
the body of the class statement which contains indented, nested statements,
importantly, de f statements that define the methods that can be called on instances of the
objects implemented by this class.

Exercises:

1. Define a class with one method show. That method should print out "Hello".
Then, create an instance of your class, and call the show method.
Solutions:

1. A simple instance method can have the sel f parameter and no others:

class Demo (object) :
def show(self):
print 'hello'

def test () :
a = Demo ()
a.show ()

test ()

Notes:

o Notice that we use ob ject as a superclass, because we want to define an
"new-style" class and because there is no other class that we want as a
superclass. See the following for more information on new-style classes:
New-style Classes -- http://www.python.org/doc/newstyle/.

o In Python, we create an instance of a class by calling the class, that is, we
apply the function call operator (parentheses) to the class.

3.7.1 The constructor

A class can define methods with special names. You have seem some of these before.
These names begin and end with a double underscore.

Page 223

www.EngineeringBooksPdf.com

A Python Book

One important special name is __init__. It's the constructor for a class. It is called
each time an instance of the class is created. Implementing this method in a class gives us
a chance to initialize each instance of our class.

Exercises:

1. Implement a class named P1ant that has a constructor which initializes two
instance variables: name and size. Also, in this class, implement a method
named show that prints out the values of these instance variables. Create several
instances of your class and "show" them.

2. Implement a class name Node that has two instance variables: data and
children, where data is any, arbitrary object and children is a list of child
Nodes. Also implement a method named show that recursively displays the
nodes in a "tree". Create an instance of your class that contains several child
instances of your class. Call the show method on the root (top most) object to
show the tree.

Solutions:

1. The constructor for a class is a method with the special name __init__ :

class Plant (object) :

def _ init_ (self, name, size):
self.name = name
self.size = size
def show(self) :
print 'name: "%s" size: %d' % (self.name,

self.size,)

def test():
pl = Plant ('Eggplant', 25)
p2 = Plant ('Tomato', 36)
plants = [pl, p2,]
for plant in plants:
plant.show ()

test ()

Notes:
o Our constructor takes two arguments: name and size. It saves those two
values as instance variables, that is in attributes of the instance.
o The show () method prints out the value of those two instance variables.
2. Itis a good idea to initialize all instance variables in the constructor. That enables
someone reading our code to learn about all the instance variables of a class by
looking in a single location:

simple_node.py

Indents = [' ' * n for n in range(10)]

Page 224

www.EngineeringBooksPdf.com

3.7.2

A Python Book

class Node (object) :
def _ _init__ (self, name=None, children=None) :
self.name = name
if children is None:
self.children = []
else:
self.children = children
def show_name (self, indent):
print '$sname: "%s"' % (Indents[indent],
self.name,)
def show(self, indent=0) :
self.show_name (indent)
indent += 1
for child in self.children:
child.show (indent)

def test () :
nl = Node ('N1l")
n2 = Node ('N2")
n3 = Node ('N3"'")
n4d = Node ('N4'")
n5 = Node ('N5', [nl, n2,])
n6 = Node('N6', [n3, n4,])
n7 = Node ('N7', [n5, n6,])
n7.show ()

if __name_ == '_ main__ ':
test ()

Notes:

o Notice that we do not use the constructor for a list ([]) as a default value for
the children parameter of the constructor. A list is mutable and would be
created only once (when the class statement is executed) and would be shared.

Inheritance -- Implementing a subclass

A subclass extends or specializes a superclass by adding additional methods to the
superclass and by overriding methods (with the same name) that already exist in the
superclass.

Exercises:

1.

Extend your Node exercise above by adding two additional subclasses of the
Node class, one named P1lant and the other named Animal. The P1lant class
also has a height instance variable and the Animal class also has a color
instance variable.

Solutions:

1.

We can import our previous Node script, then implement classes that have the
Node class as a superclass:

Page 225

www.EngineeringBooksPdf.com

A Python Book

from simple_node import Node, Indents

class Plant (Node) :
def __init__ (self, name, height=-1, children=None) :
Node._ init_ (self, name, children)
self.height = height
def show(self, indent=0) :
self.show_name (indent)
print '$sheight: %s' % (Indents[indent],
self.height,)
indent += 1
for child in self.children:
child.show (indent)

class Animal (Node) :

def _ _init_ (self, name, color='no color',
children=None) :
Node._ init_ (self, name, children)
self.color = color

def show(self, indent=0) :
self.show_name (indent)
print '$scolor: "%s"' % (Indents[indent],
self.color,)
indent += 1
for child in self.children:
child.show (indent)

def test () :

nl = Animal ('scrubjay', 'gray blue')

n2 = Animal ('raven', 'black')

n3 = Animal ('american kestrel', 'brown')

n4 = Animal ('red-shouldered hawk', 'brown and
gray')

n5 = Animal ('corvid', 'none', [nl, n2,])

n6 = Animal ('raptor', children=[n3, n4,])
n7a = Animal ('bird', children=[n5, no6,])

nl = Plant ('valley oak', 50)

n2 = Plant ('canyon live oak', 40)

n3 = Plant ('jeffery pine', 120)

n4 = Plant ('ponderosa pine', 140)

n5 = Plant ('oak', children=[nl, n2,])

n6 = Plant ('conifer', children=[n3, n4,])

n7b = Plant ('tree', children=[n5, n6,])

n8 = Node ('birds and trees', [n7a, n7b,])
n8.show ()

if _ name_ == '_ _main__ ':
test ()

Notes:
o The show method in class P1lant calls the show_name method in its
superclass using sel f.show_name (.. .).Python searches up the

Page 226

www.EngineeringBooksPdf.com

A Python Book

inheritance tree to find the show_name method in class Node.

o The constructor (__init__)inclasses Plant and Animal each call the
constructor in the superclass by using the name of the superclass. Why the
difference? Because, if (in the Plant class, for example) it used
self.__init__ (...) itwouldbecallingthe __init___ inthe Plant
class, itself. So, it bypasses itself by referencing the constructor in the
superclass directly.

o This exercise also demonstrates "polymorphism" -- The show method is
called a number of times, but which implementation executes depends on
which instance it is called on. Calling on the show method on an instance of
class Plant results in a call to Plant . show. Calling the show method on
an instance of class Animal results in a call to Animal . show. And so on. It
is important that each show method takes the correct number of arguments.

3.7.3 Classes and polymorphism

Python also supports class-based polymorphism, which was, by the way, demonstrated in
the previous example.

Exercises:

1. Write three classes, each of which implement a show () method that takes one
argument, a string. The show method should print out the name of the class and
the message. Then create a list of instances and call the show () method on each
object in the list.

Solution:

1. We implement three simple classes and then create a list of instances of these
classes:

class A (object) :
def show(self, msg):
print 'class A -- msg: "%s"' % (msg,)

class B(object) :
def show(self, msg) :
print 'class B -- msg: "%s"' % (msg,)

class C(object) :
def show(self, msg):

print 'class C —-— msg: "%s"' % (msg,)
def test():
objs = [A(), BO, CO, AQ, |
for idx, obj in enumerate (objs) :
msg = 'message # $d' % (idx + 1,)

obj.show (msg)

Page 227

www.EngineeringBooksPdf.com

A Python Book

if name == ' main '

test ()

Notes:

o We can call the show () method in any object in the list objs as long as we
pass in a single parameter, that is, as long as we obey the requirements of
duck-typing. We can do this because all objects in that list implement a
show () method.

o In a statically typed language, that is a language where the type is (also)
present in the variable, all the instances in example would have to descend
from a common superclass and that superclass would have to implement a
show () method. Python does not impose this restriction. And, because
variables are not not typed in Python, perhaps that would not even possible.

o Notice that this example of polymorphism works even though these three
classes (A, B, and C) are not related (for example, in a class hierarchy). All
that is required for polymorphism to work in Python is for the method names
to be the same and the arguments to be compatible.

3.7.4 Recursive calls to methods

A method in a class can recusively call itself. This is very similar to the way in which we
implemented recursive functions -- see: Recursive functions.

Exercises:

1. Re-implement the binary tree of animals and birds described in Recursive
functions, but this time, use a class to represent each node in the tree.
2. Solve the same problem, but this time implement a tree in which each node can
have any number of children (rather than exactly 2 children).
Solutions:

1. We implement a class with three instance variables: (1) name, (2) left branch, and
(3) right branch. Then, we implement a show () method that displays the name
and calls itself to show the children in each sub-tree:

Indents = [' ' * idx for idx in range (10)]

class AnimalNode (object) :

def _ _init__ (self, name, left_branch=None,
right_branch=None) :
self.name = name

self.left_branch = left_branch
self.right_branch = right_branch

def show(self, level=0):

[

print '$sname: %s' % (Indents[level],

Page 228

www.EngineeringBooksPdf.com

A Python Book

self.name,)
level += 1
if self.left_branch is not None:
self.left_branch.show (level)
if self.right_branch is not None:
self.right_branch.show(level)

Tree = AnimalNode ('animals',
AnimalNode ('birds',
AnimalNode ('seed eaters',
AnimalNode ('house finch'),
AnimalNode ('white crowned sparrow'),
),
AnimalNode ('insect eaters',
AnimalNode ('hermit thrush'),
AnimalNode ('black headed phoebe'),
)y
)/
None,

)

def test () :
Tree.show ()

if name == ' main '

test ()

2. Instead of using a left branch and a right branch, in this solution we use a list to
represent the children of a node:

class AnimalNode (object) :
def _ init__ (self, data, children=None) :
self.data = data
if children is None:
self.children = []
else:
self.children = children

def show(self, level='"):
print '%sdata: %s' % (level, self.data,)
level += " '
for child in self.children:
child.show (level)

Tree = AnimalNode ('animals', [
AnimalNode ('birds', [

AnimalNode ('seed eaters', [
AnimalNode ('house finch'),
AnimalNode ('white crowned sparrow'),
AnimalNode ('lesser gold finch'),

1),

AnimalNode ('insect eaters', [
AnimalNode ('hermit thrush'),

Page 229

www.EngineeringBooksPdf.com

A Python Book

AnimalNode ('black headed phoebe'),
1)
1)
1)

def test () :
Tree.show ()

if __name_ == '__main_ ':
test ()
Notes:
o We represent the children of a node as a list. Each node "has-a" list of
children.

o Notice that because a list is mutable, we do not use a list constructor ([]) in
the initializer of the method header. Instead, we use None, then construct an
empty list in the body of the method if necessary. See section Optional
arguments and default values for more on this.

o We (recursively) call the show method for each node in the children list.
Since a node which has no children (a leaf node) will have an empty
children list, this provides a limit condition for our recursion.

3.7.5 Class variables, class methods, and static methods

A class variable is one whose single value is shared by all instances of the class and, in
fact, is shared by all who have access to the class (object).

"Normal" methods are instance methods. An instance method receives the instance as its
first argument. A instance method is defined by using the de f statement in the body of a
class statement.

A class method receives the class as its first argument. A class method is defined by
defining a normal/instance method, then using the classmethod built-in function. For
example:

class ASimpleClass (object) :
description = 'a simple class'
def show_class(cls, msqg):

print '$s: %s' % (cls.description , msg,)
show_class = classmethod (show_class)

A static method does not receive anything special as its first argument. A static method is
defined by defining a normal/instance method, then using the staticmethod built-in
function. For example:

class ASimpleClass (object) :
description = 'a simple class'
def show_class (msqg) :

Page 230

www.EngineeringBooksPdf.com

A Python Book

[o)

print '%s: %$s' % (ASimpleClass.description , msg,)
show_class = staticmethod(show_class)

In effect, both class methods and static methods are defined by creating a normal
(instance) method, then creating a wrapper object (a class method or static method) using
the classmethod or staticmethod built-in function.

Exercises:

1. Implement a class that keeps a running total of the number of instances created.
2. Implement another solution to the same problem (a class that keeps a running
total of the number of instances), but this time use a static method instead of a
class method.
Solutions:

1. We use a class variable named instance_count, rather than an instance
variable, to keep a running total of instances. Then, we increment that variable
each time an instance is created:

class CountInstances (object) :

instance_count = 0
def init (self, name='-no name-"') :
self.name = name

CountInstances.instance_count += 1

def show(self):
print 'name: "%s"' $ (self.name,)

def show_instance_count (cls) :
print 'instance count: %d' %
(cls.instance_count,)
show_instance_count =

classmethod (show_instance_count)

def test():
instances = []
instances.append (CountInstances ('apple'))
instances.append (CountInstances ('banana'))
(

(
(
instances.append (CountInstances ('cherry'))
instances.append (CountInstances ())
for instance in instances:

instance.show ()
CountInstances.show_instance_count ()

if name == ' main

test ()

Notes:

Page 231

www.EngineeringBooksPdf.com

A Python Book

o When we run this script, it prints out the following:

name: "apple"
name: "banana"
name: "cherry"
name: "-no name-"
instance count: 4

o The call to the classmethod built-in function effectively wraps the
show_instance_count method in a class method, that is, in a method
that takes a class object as its first argument rather than an instance object. To
read more about classmethod, go to Built-in Functions --
http://docs.python.org/lib/built-in-funcs.html and search for "classmethod".

2. A static method takes neither an instance (self) nor a class as its first
paramenter. And, static method is created with the staticmethod () built-in
function (rather than with the classmethod () built-in):

class CountInstances (object):

instance_count = 0
def init (self, name='-no name-"'):
self.name = name

CountInstances.instance_count += 1

def show(self):
print 'name: "%$s"' % (self.name,)

def show_instance_count () :
print 'instance count: %d' % (
CountInstances.instance_count,)
show_instance_count =
staticmethod (show_instance_count)

def test () :
instances = []
instances.append (CountInstances ('apple'))
instances.append (CountInstances ('banana'))
instances.append (CountInstances ('cherry'))
(

instances.append (CountInstances ())
for instance in instances:
instance.show ()

CountInstances.show_instance_count ()

if __name_ == '_ main_ ':
test ()

3.7.5.1 Decorators for classmethod and staticmethod

A decorator enables us to do what we did in the previous example with a somewhat
simpler syntax.

Page 232

www.EngineeringBooksPdf.com

A Python Book

For simple cases, the decorator syntax enables us to do this:

@functionwrapper
def methodl (self):
o
o
o

instead of this:

def methodl (self) :
o
o
o
methodl = functionwrapper (methodl)

So, we can write this:

@classmethod

def methodl (self) :
o)
o
o

instead of this:

def methodl (self) :
o)
o
o
methodl = classmethod (methodl)

Exercises:

1. Implement the Count Instances example above, but use a decorator rather
than the explicit call to classmethod.
Solutions:

1. A decorator is an easier and cleaner way to define a class method (or a static
method):

class CountInstances (object) :

instance_count = 0
def init (self, name='-no name-"'):
self.name = name

CountInstances.instance_count += 1

def show(self):
print 'name: "%s"' % (self.name,)

@classmethod

Page 233

www.EngineeringBooksPdf.com

A Python Book

def show_instance_count (cls) :
print 'instance count: %d' %
(cls.instance_count,)
Note that the following line has been replaced by
the classmethod decorator, above.
show_instance_count =

classmethod (show_instance_count)

def test():
instances = []
instances.append (CountInstances ('apple'))
instances.append (CountInstances ('banana'))
instances.append (CountInstances ('cherry'))
(

instances.append (CountInstances ())
for instance in instances:
instance.show ()
CountInstances.show_instance_count ()
if __name_ == '_ main__ ':
test ()

3.8 Additional and Advanced Topics

3.8.1 Decorators and how to implement them
Decorators can be used to "wrap" a function with another function.

When implementing a decorator, it is helpful to remember that the following decorator
application:

@dec
def func(argl, arg2):
pass

is equivalent to:

def func(argl, arg2):
pass
func = dec (func)

Therefore, to implement a decorator, we write a function that returns a function object,
since we replace the value originally bound to the function with this new function object.
It may be helpful to take the view that we are creating a function that is a wrapper for the
original function.

Exercises:

1. Write a decorator that writes a message before and after executing a function.
Solutions:

Page 234

www.EngineeringBooksPdf.com

A Python Book

1. A function that contains and returns an inner function can be used to wrap a
function:

def trace (func):
def inner (*args, **kwargs):
print '>>"
func (*args, **kwargs)
print '<<'
return inner

@trace

def funcl(x, y):
print 'x:', x, 'y:', y
func2 ((x, vy))

@trace
def func2 (content) :
print 'content:', content

def test () :
funcl ('aa', 'bb')

test ()

Notes:
o Your inner function can use *args and **kwargs to enable it to call
functions with any number of arguments.

3.8.1.1 Decorators with arguments

Decorators can also take arguments.

The following decorator with arguments:

@dec (arghA, argB)
def func(argl, arg2):
pass

is equivalent to:

def func(argl, arg2):
pass
func = dec(argA, argB) (func)

Because the decorator's arguments are passed to the result of calling the decorator on the
decorated function, you may find it useful to implement a decorator with arguments using
a function inside a function inside a function.

Exercises:

1. Write and test a decorator that takes one argument. The decorator prints a
message along with the value of the argument before and after entering the

Page 235

www.EngineeringBooksPdf.com

A Python Book

decorated function.
Solutions:

1. Implement this decorator that takes arguments with a function containing a nested
function which in turn contains a nested function:

def trace (msq) :
def innerl (func) :
def inner2 (*args, **kwargs):

print '>> [%s]' % (msg,)
retval = func(*args, **kwargs)
print '<< [%s]' % (msg,)

return retval
return inner?2
return innerl

@trace ('tracing funcl')
def funcl(x, y):
print 'x:', x, 'y:', y
result = func2((x, y))
return result

@trace ('tracing func2')

def func2 (content) :
print 'content:', content
return content * 3

def test () :
result = funcl('aa', 'bb')
print 'result:', result

test ()

3.8.1.2 Stacked decorators
Decorators can be "stacked".

The following stacked decorators:

@dec2

@decl

def func(argl, arg2, ...):
pass

are equivalent to:

def func(argl, arg2, ...):
pass
func = dec2 (decl (func))

Exercises:

1. Implement a decorator (as above) that traces calls to a decorated function. Then

Page 236

www.EngineeringBooksPdf.com

A Python Book

"stack" that with another decorator that prints a horizontal line of dashes before
and after calling the function.

2. Modify your solution to the above exercise so that the decorator that prints the
horizontal line takes one argument: a character (or characters) that can be repeated
to produce a horizontal line/separator.

Solutions:

1. Reuse your tracing function from the previous exercise, then write a simple
decorator that prints a row of dashes:

def trace (msqg) :
def innerl (func) :
def inner2(*args, **kwargs):

print '>> [%s]' % (msg,)
retval = func(*args, **kwargs)
print '<< [%s]' % (msg,)

return retval
return inner2
return innerl

def horizontal_ line (func) :
def inner (*args, **kwargs):

print '-' * 50
retval = func(*args, **kwargs)
print '-' * 50

return retval
return inner

@trace ('tracing funcl')
def funcl(x, y):

print "xsV, =, "y, ¥
result = func2((x, vy))
return result

@horizontal_line

@trace ('tracing func2')

def func2 (content) :
print 'content:', content
return content * 3

def test () :
result = funcl('aa', 'bb')
print 'result:', result

test ()

2. Once again, a decorator with arguments can be implemented with a function
nested inside a function which is nested inside a function. This remains the same
whether the decorator is used as a stacked decorator or not. Here is a solution:

‘ def trace (msqg):

Page 237

www.EngineeringBooksPdf.com

A Python Book

def innerl (func) :
def inner2 (*args, **kwargs):

print '>> [%s]' % (msg,)
retval = func(*args, **kwargs)
print '<< [%s]' % (msg,)

return retval
return inner2
return innerl

def horizontal_line (line_chr) :
def innerl (func) :
def inner2 (*args, **kwargs):
print line_chr * 15
retval = func(*args, **kwargs)
print line_chr * 15
return retval
return inner2
return innerl

@trace ('tracing funcl')

def funcl(x, y):
print 'x:', x, 'y: y
result = func2 ((x, y))
return result

1 1

Qhorizontal line ('<**>")
@trace ('tracing func2')
def func2 (content) :
print 'content:', content
return content * 3

def test () :

result = funcl('aa', 'bb')
print 'result:', result

test ()

3.8.1.3 More help with decorators
There is more about decorators here:

e Python syntax and semantics --
http://en.wikipedia.org/wiki/Python_syntax_and_semantics#Decorators at
Wikipedia.

e PythonDecoratorLibrary -- http://wiki.python.org/moin/PythonDecoratorLibrary
at the Python Wiki has lots of sample code.

e PEP 318 -- Decorators for Functions and Methods --
http://www.python.org/dev/peps/pep-0318/ is the formal proposal and
specification for Python decorators.

Page 238

www.EngineeringBooksPdf.com

A Python Book

3.8.2 lterables

3.8.2.1 A few preliminaries on Iterables
Definition: iterable (adjective) -- that which can be iterated over.

A good test of whether something is iterable is whether it can be used in a for:
statement. For example, if we can write for item in X:, then X is iterable. Here is
another simple test:

def isiterable (x):
try:
y = iter (x)
except TypeError, exp:
return False
return True

Some kinds of iterables:

e Containers -- We can iterate over lists, tuples, dictionaries, sets, strings, and other
containers.

e Some built-in (non-container) types -- Examples:

o A text file open in read mode is iterable: it iterates over the lines in the file.

o The xrange type -- See XRange Type
http://docs.python.org/lib/typesseq-xrange.html. It's useful when you want a
large sequence of integers to iterate over.

e Instances of classes that obey the iterator protocol. For a description of the iterator
protocol, see Iterator Types -- http://docs.python.org/lib/typeiter.html. Hint: Type
dir (obj) and look for "__iter_ " and "next".

e Generators -- An object returned by any function or method that contains yield.

Exercises:

1. Implement a class whose instances are interable. The constructor takes a list of
URLs as its argument. An instance of this class, when iterated over, generates the
content of the Web page at that address.

Solutions:

1. We implement a class thathas __iter__ () and next () methods:

import urllib

class WebPages (object) :
def _ init__ (self, urls):
self.urls = urls
self.current_index = 0
def _ iter_ (self):
self.current_index
return self

Il
o

Page 239

www.EngineeringBooksPdf.com

A Python Book

def next (self):

raise Stoplteration

url
self.current_index += 1

f = urllib.urlopen (url)
content = f.read()
f.close ()

return content

def test():
urls = |
'http://www.python.org',
'http://en.wikipedia.org/"',

age) ',
]
pages WebPages (urls)
for page in pages:

test ()

'http://en.wikipedia.org/wiki/Python_

if self.current_index >= len(self.urls):

self.urls[self.current_index]

(programming_langu

print 'length: %d' % (len(page),)
pages = WebPages (urls)
print '-' * 50
page = pages.next ()
print 'length: %d' % (len(page),)
page = pages.next ()
print 'length: %d' % (len(page),)
page = pages.next ()
print 'length: %d' % (len(page),)
page = pages.next ()
print 'length: %d' % (len(page),)

3.8.2.2 More help with iterables

The itertools module in the Python standard library has helpers for iterators:

http://docs.python.org/library/itertools.html#module-itertools
3.9 Applications and Recipes

3.9.1 XML -- SAX, minidom, ElementTree, Lxml
Exercises:

1.
attributes, character data) for each element.
2.

SAX -- Parse an XML document with SAX, then show some information (tag,

Minidom -- Parse an XML document with minidom, then walk the DOM tree

and show some information (tag, attributes, character data) for each element.

Page 240

www.EngineeringBooksPdf.com

A Python Book

Here is a sample XML document that you can use for input:

<?xml version="1.0"?>
<people>
<person id="1" value="abcd" ratio="3.2">
<name>Alberta</name>
<interest>gardening</interest>
<interest>reading</interest>
<category>5</category>
</person>
<person id="2">
<name>Bernardo</name>
<interest>programming</interest>
<category></category>
<agent>
<firstname>Darren</firstname>
<lastname>Diddly</lastname>
</agent>
</person>
<person id="3" wvalue="efgh">
<name>Charlie</name>
<interest>people</interest>
<interest>cats</interest>
<interest>dogs</interest>
<category>8</category>
<promoter>
<firstname>David</firstname>
<lastname>Donaldson</lastname>
<client>
<fullname>Arnold Applebee</fullname>
<refid>10001</refid>
</client>
</promoter>
<promoter>
<firstname>Edward</firstname>
<lastname>Eddleberry</lastname>
<client>
<fullname>Arnold Applebee</fullname>
<refid>10001</refid>
</client>
</promoter>
</person>
</people>

ElementTree -- Parse an XML document with ElementTree, then walk the DOM
tree and show some information (tag, attributes, character data) for each element.
Ixml -- Parse an XML document with 1xml, then walk the DOM tree and show
some information (tag, attributes, character data) for each element.

Modify document with ElementTree -- Use ElementTree to read a document, then
modify the tree. Show the contents of the tree, and then write out the modified
document.

XPath -- Ixml supports XPath. Use the XPath support in Ixml to address each of

Page 241

www.EngineeringBooksPdf.com

A Python Book

the following in the above XML instance document:
o The text in all the name elements
o The values of all the 1d attributes

Solutions:

1.

We can use the SAX support in the Python standard library:

#!/usr/bin/env python

mmn

element.

Usage:

python test_sax.py infilename
Examples:

python test_sax.py people.xml

mmn

import sys
from xml.sax import make_parser, handler

class TestHandler (handler.ContentHandler) :
def _ _init__ (self):
self.level = 0

def show_with_level (self, value):

)

def startDocument (self) :
self.show_with_level ('Document start')
self.level += 1

def endDocument (self) :
self.level —= 1
self.show_with_level ('Document end')

def startElement (self, name, attrs):

"$s"' % (name,))
self.level += 1

def endElement (self, name) :
self.level —= 1

"$s"' % (name,))

def characters(self, content):
content = content.strip()
if content:
self.show_with_level ('characters:
(content,))

Parse and XML with SAX. Display info about each

print '%$s%s' % (' ' * self.level, value,)

self.show_with_level ('start element —-— name:

self.show_with_ level ('end element —- name:

nonmi1 o
OS o

Page 242

www.EngineeringBooksPdf.com

A Python Book

def test (infilename) :
parser = make_parser ()
handler = TestHandler ()
parser.setContentHandler (handler)
parser.parse (infilename)

def usage() :
print __doc_

sys.exit (1)

def main () :

args = sys.argv[l:]

if len(args) != 1:
usage ()

infilename = args[0]

test (infilename)

if name == '_ main U g
main ()

2. The minidom module contains a parse () function that enables us to read an
XML document and create a DOM tree:

#!/usr/bin/env python
"""Process an XML document with minidom.
Show the document tree.

Usage:

python minidom walk.py [options] infilename
mwnw

import sys
from xml.dom import minidom

def show_tree (doc) :
root = doc.documentElement
show_node (root, 0)

def show_node (node, level):
count = 0
if node.nodeType == minidom.Node.ELEMENT_NODE:
show_level (level)
print 'tag: %$s' % (node.nodeName,)
for key in node.attributes.keys():
attr = node.attributes.get (key)
show_level (level + 1)
print '—- attribute name: %s value: "%s"' %
(attr.name,
attr.value,)
if (len(node.childNodes) == 1 and
node.childNodes[0] .nodeType ==

Page 243

www.EngineeringBooksPdf.com

A Python Book

minidom.Node.TEXT_NODE) :

show_level (level + 1)

print '- data: "%s"' %
(node.childNodes[0] .data,)

for child in node.childNodes:
count += 1
show_node (child, level + 1)
return count

def show_level (level) :
for x in range(level):
print ' v

def test () :

args = sys.argv[l:]

if len(args) != 1:
print _ doc_
sys.exit (1)

docname = args[0]

doc = minidom.parse (docname)

show_tree (doc)

if _ name_ == '_ _main___
#import pdb; pdb.set_trace()
test ()

3. ElementTree enables us to parse an XML document and create a DOM tree:

#!/usr/bin/env python
"""Process an XML document with elementtree.
Show the document tree.

Usage:

mmn

import sys
from xml.etree import ElementTree as etree

def show_tree (doc) :
root = doc.getroot ()
show_node (root, 0)

def show_node (node, level):
show_level (level)
print 'tag: %$s' % (node.tag,)
for key, value in node.attrib.iteritems{() :
show_level (level + 1)
print '- attribute -- name: %s value:
(key, value,)
if node.text:

text = node.text.strip/()

python elementtree_walk.py [options] infilename

no onm
%S

%

Page 244

www.EngineeringBooksPdf.com

A Python Book

show_level (level + 1)

print '- text: "%s"' $ (node.text,)
if node.tail:

tail = node.tail.strip/()

show_level (level + 1)

print '- tail: "S%s"' $ (tail,)
for child in node.getchildren() :

show_node (child, level + 1)

def show_level (level) :
for x in range(level):
print ' v

def test():

args = sys.argv[l:]

if len(args) != 1:
print _ doc_
sys.exit (1)

docname = args[0]

doc = etree.parse (docname)

show_tree (doc)

if _ name_ == '_ _main___
#import pdb; pdb.set_trace()
test ()

4. 1xml enables us to parse an XML document and create a DOM tree. In fact, since
Ixml attempts to mimic the ElementTree API, our code is very similar to that in
the solution to the ElementTree exercise:

#!/usr/bin/env python
"""Process an XML document with elementtree.
Show the document tree.

Usage:
python 1lxml _walk.py [options] infilename

mmn

#

Imports:

import sys

from lxml import etree

def show_tree (doc) :
root = doc.getroot ()
show_node (root, 0)

def show_node (node, level) :
show_level (level)

print 'tag: %$s' % (node.tag,)
for key, value in node.attrib.iteritems() :

Page 245

www.EngineeringBooksPdf.com

A Python Book

show_level (level + 1)
print '- attribute -- name: %s value: "%s"' %
(key, value,)
if node.text:

text = node.text.strip()
show_level (level + 1)
print '- text: "%s"' $ (node.text,)

if node.tail:
tail = node.tail.strip()
show_level (level + 1)
print '- tail: "%s"' % (tail,)
for child in node.getchildren() :
show_node (child, level + 1)

def show_level (level) :
for x in range (level) :
print ' i

def test():

args = sys.argv[l:]

if len(args) != 1:
print __ doc_
sys.exit (1)

docname = args|[0]

doc = etree.parse (docname)

show_tree (doc)

if _ _name_ == '_ _main__ ':
#import pdb; pdb.set_trace()
test ()

5. We can modify the DOM tree and write it out to a new file:

#!/usr/bin/env python
"""Process an XML document with elementtree.
Show the document tree.

Modify the document tree and then show it again.
Write the modified XML tree to a new file.

Usage:

python elementtree_walk.py [options] infilename
outfilename
Options:

-h, —--help Display this help message.
Example:

python elementtree_walk.py myxmldoc.xml
myotherxmldoc.xml

mmn

import sys
import os
import getopt

Page 246

www.EngineeringBooksPdf.com

A Python Book

import time

Use ElementTree.

from xml.etree import ElementTree as etree
Or uncomment to use Lxml.

#from lxml import etree

def show_tree (doc) :
root = doc.getroot ()
show_node (root, 0)

def show_node (node, level):
show_level (level)
print 'tag: %$s' % (node.tag,)
for key, value in node.attrib.iteritems() :
show_level (level + 1)
print '— attribute -- name: %s value:
(key, value,)
if node.text:
text = node.text.strip()
show_level (level + 1)

print '- text: "%s"' % (node.text,)
if node.tail:

tail = node.tail.strip()

show_level (level + 1)

print '- tail: "%s"' % (tail,)

for child in node.getchildren() :
show_node (child, level + 1)

def show_level (level) :
for x in range(level) :

print ' 7

root = doc.getroot ()
modify node (root, tag, attrname, attrvalue)

if node.tag == tag:
node.attrib[attrname] = attrvalue
for child in node.getchildren() :

def test (indocname, outdocname) :
doc = etree.parse (indocname)
show_tree (doc)
print '-' * 50
date = time.ctime ()
modify tree(doc, 'person', 'date', date)
show_tree (doc)

def modify_tree(doc, tag, attrname, attrvalue):

noggmr o

def modify_ node (node, tag, attrname, attrvalue):

modify_node(child, tag, attrname, attrvalue)

write_output = False
if os.path.exists (outdocname) :
response = raw_input ('Output file (%s) exists.
Page 247

www.EngineeringBooksPdf.com

A Python Book

Over-write? (y/n): ' %
outdocname)
if response == 'y':
write_output = True
else:
write_output = True
if write_output:
doc.write (outdocname)
print 'Wrote modified XML tree to %s' %
outdocname
else:
print 'Did not write output file.'

def usage() :
print _ _doc_
sys.exit (1)

def main() :
args = sys.argv[l:]
try:
opts, args = getopt.getopt (args, 'h', ['help',
1)
except:
usage ()
for opt, val in opts:
if opt in ('-h', '—--help'):
usage ()
if len(args) !=
usage ()
indocname = args[0]
outdocname = args[1]
test (indocname, outdocname)

2

if _ name_ == '__main__ ':
#import pdb; pdb.set_trace()
main ()

Notes:

o The above solution contains an import statement for ElementTree and
another for Ixml. The one for Ixml is commented out, but you could change
that if you wish to use Ixml instead of ElementTree. This solution will work
the same way with either ElementTree or Ixml.

6. When we parse and XML document with Ixml, each element (node) has an
xpath () method.

test_xpath.py

from lxml import etree

def test():
doc = etree.parse('people.xml')
root = doc.getroot ()

Page 248

www.EngineeringBooksPdf.com

A Python Book

print root.xpath("//name/text ()")
print root.xpath("//@id")

test ()

And, when we run the above code, here is what we see:

S python test_xpath.py
['Alberta', 'Bernardo', 'Charlie']
['l" '2" '3']

For more on XPath see: XML Path Language (XPath) --
http://www.w3.org/TR/xpath

3.9.2 Relational database access

You can find information about database programming in Python here: Database
Programming -- http://wiki.python.org/moin/DatabaseProgramming/.

For database access we use the Python Database API. You can find information about it
here: Python Database API Specification v2.0 --
http://www.python.org/dev/peps/pep-0249/.

To use the database API we do the following:

Use the database interface module to create a connection object.

Use the connection object to create a cursor object.

Use the cursor object to execute an SQL query.

Retrieve rows from the cursor object, if needed.

Optionally, commit results to the database.

Close the connection object.

Our examples use the gadfly database, which is written in Python. If you want to use
gadfly, you can find it here: http://gadfly.sourceforge.net/. gadf 1y is a reasonable
choice if you want an easy to use database on your local machine.

S N

Another reasonable choice for a local database is sqlite3, which is in the Python
standard library. Here is a descriptive quote from the SQLite Web site:

"SQLite is a software library that implements a self-contained,
serverless, zero-configuration, transactional SQL database engine.
SQLite is the most widely deployed SQL database engine in the world.
The source code for SQLite is in the public domain."

You can learn about it here:

e sqlite3 - DB-API 2.0 interface for SQLite databases --
http://docs.python.org/library/sqlite3.html
e SQLite home page -- http://www.sqlite.org/

Page 249

www.EngineeringBooksPdf.com

A Python Book

e The pysqlite web page -- http://oss.itsystementwicklung.de/trac/pysqlite/
If you want or need to use another, enterprise class database, for example PostgreSQL,
MySQL, Oracle, etc., you will need an interface module for your specific database. You
can find information about database interface modules here: Database interfaces --
http://wiki.python.org/moin/Databaselnterfaces

Excercises:

1.
2.

4.

Write a script that retrieves all the rows in a table and prints each row.

Write a script that retrieves all the rows in a table, then uses the cursor as an
iterator to print each row.

Write a script that uses the cursor's description attribute to print out the name
and value of each field in each row.

Write a script that performs several of the above tasks, but uses sgqlite3 instead
of gadfly.

Solutions:

1.

2.

We can execute a SQL query and then retrieve all the rows with
fetchall ():

import gadfly

def test():

connection = gadfly.connect ("dbtestl",
"plantsdbdir")

cur = connection.cursor ()

cur.execute ('select * from plantsdb order by
p_name')

rows = cur.fetchall ()

for row in rows:

print '2. row:', row
connection.close ()

test ()

The cursor itself is an iterator. It iterates over the rows returned by a query. So,
we execute a SQL query and then we use the cursor in a for : statement:

import gadfly

def test () :

connection = gadfly.connect ("dbtestl",
"plantsdbdir")

cur = connection.cursor ()

cur.execute ('select * from plantsdb order by
p_name')

for row in cur:
print row
connection.close ()

Page 250

www.EngineeringBooksPdf.com

A Python Book

‘ test ()

3. The description attribute in the cursor is a container that has an item describing

each field:
import gadfly
def test () :
cur.execute ('select * from plantsdb order by
p_name')
for field in cur.description:
print 'field:', field
rows = cur.fetchall ()
for row in rows:
for idx, field in enumerate (row) :
content = '%s: "%$s"' %
(cur.description[idx] [0], field,)
print content,
print
connection.close ()
test ()
Notes:

o The comma at the end of the print statement tells Python not to print a

new-line.

o The cur.description is a sequence containing an item for each field.

After the query, we can extract a description of each field.

The solutions using sglite3 are very similar to those using gadfly. For
information on sglite3, see: sqlite3 — DB-API 2.0 interface for SQLite

databases http://docs.python.org/library/sqlite3.html#module-sqlite3.

#!/usr/bin/env python

mmn

Perform operations on sqglite3 (plants) database.

python testl.py create
python testl.py show

melon" 10
python testl.py delete lemon

Usage:

python py_db_api.py command [argl, ...]
Commands :

create —-- create new database.

show —— show contents of database.

add -- add row to database. Requires 3 args (name,
descrip, rating).

delete - remove row from database. Requires 1 arg
(name) .
Examples:

python testl.py add crenshaw "The most succulent

Page 251

www.EngineeringBooksPdf.com

A Python Book

mmn

import sys
import sglite3

Values = [
('lemon', 'bright and yellow', '7'"),
('peach', 'succulent', '9'"),
('"banana', 'smooth and creamy', '8'),
('"nectarine', 'tangy and tasty', '9'),
('orange', 'sweet and tangy', '8'),

]

Field_defs = [
'p_name varchar',
'p_descrip varchar',
#'p_rating integer',
'p_rating varchar',

]

def createdb () :

connection = sglite3.connect ('sglite3plantsdb')
cursor = connection.cursor ()
gl = "create table plantsdb (%s)" % (',

'.join(Field_defs))
print 'create gl: %s' % gl
cursor.execute (gl)

gl = "create index indexl on plantsdb (p_name)"
cursor.execute (ql)
gl = "insert into plantsdb (p_name, p_descrip,

(
p_rating) values ('%s', '%s', %s)"

for spec in Values:

g2 = gl % spec

print 'g2: "%s"' % g2

cursor.execute (g2)
connection.commit ()
showdbl (cursor)

connection.close ()

def showdb () :
connection, cursor = opendb ()
showdbl (cursor)
connection.close ()

def showdbl (cursor) :

cursor.execute ("select * from plantsdb order by
p_name")

hr ()

description = cursor.description

Page 252

www.EngineeringBooksPdf.com

A Python Book

print description

print 'description:'

for rowdescription in description:
print ' %$s' % (rowdescription,)

hr ()

rows cursor.fetchall ()

print rows

print 'rows:'

for row in rows:
print ' %$s

hr ()

print 'content:'

for row in rows:
descrip row[1l]
name row[0]
rating '$s!
print '

name.1ljust

'3

(row,)

descrip.ljust (30),

rating.rjust (4),

def addtodb (name,

)

descrip,

rating) :

try:

rating int (rating)
except ValueError, exp:
print 'Error: rating must be integer.'
return
connection, cursor opendb ()
cursor.execute ("select * from plantsdb where p_name
'&s'" name)
rows cursor.fetchall ()
if len(rows) > 0O:
ql "update plantsdb set p_descrip='%s',
p_rating='%s' where p_name='%s'" % (
descrip, rating, name,)
print 'gl:', gl
cursor.execute (gl)
connection.commit ()
print 'Updated'
else:
cursor.execute ("insert into plantsdb values
I%Sl, I%Sl)"% (
name, descrip,
connection.commit ()
print 'Added'
showdbl (cursor)
connection.close ()

= %

rating))

def deletefromdb (name) :

connection, cursor opendb ()

cursor.execute ("select * from plantsdb where p_name
"$s'" name)

%

Page 253

www.EngineeringBooksPdf.com

A Python Book

rows = cursor.fetchall ()
if len(rows) > O0:
cursor.execute ("delete from plantsdb where

— 10 ™n o)

p_name="'%s % name)
connection.commit ()
print 'Plant (%s) deleted.' % name
else:

[

print 'Plant (%s) does not exist.' % name
showdbl (cursor)
connection.close ()

def opendb () :
connection = sglite3.connect ("sglite3plantsdb")
cursor = connection.cursor ()

return connection, cursor

def hr():
print '-' * 60

def usage() :
print __ doc_
sys.exit (1)

def main () :

args = sys.argv[l:]
if len(args) < 1:
usage ()
cmd = args[0]
if cmd == 'create':
if len(args) != 1:
usage ()
createdb ()
elif cmd == 'show':
if len(args) != 1:
usage ()
showdb ()
elif cmd == 'add':
if len(args) < 4:
usage ()
name = args([l]
descrip = args|[2]

rating = args[3]

addtodb (name, descrip, rating)
elif cmd == 'delete':

if len(args) < 2:

usage ()

name = args|[1l]

deletefromdb (name)
else:

Page 254

www.EngineeringBooksPdf.com

A Python Book

usage ()

if name == main 3
main ()

3.9.3 CSV -- comma separated value files

There is support for parsing and generating CSV files in the Python standard library. See:
csv — CSV File Reading and Writing
http://docs.python.org/library/csv.html#module-csv.

Exercises:

1. Read a CSV file and print the fields in columns. Here is a sample file to use as

input:
name description rating
Lemon, Bright yellow and tart,5
Eggplant,Purple and shiny, 6
Tangerine, Succulent, 8
Solutions:

1. Use the CSV module in the Python standard library to read a CSV file:

mmn

Read a CSV file and print the contents in columns.

mmn

import csv

def test (infilename) :

infile = open(infilename)

reader = csv.reader (infile)

print '==== ===========
______]

print 'Name Description
Rating'

print '==== ===========

for fields in reader:

if len(fields) == 3:
line = '"%s %s %s' % (fields[0].ljust (20),

fields[1].1just (40),
fields[2].1just (4))
print line
infile.close ()

def main() :
infilename = 'csv_report.csv'
test (infilename)

Page 255

www.EngineeringBooksPdf.com

A Python Book

if name == ' main '
main ()

And, when run, here is what it displays:

Name Description

Rating

Lemon Bright yellow and tart
5

Eggplant Purple and shiny

6

Tangerine Succulent

8

3.9.4 YAML and PyYAML

YAML is a structured text data representation format. It uses indentation to indicate
nesting. Here is a description from the YAML Web site:

"YAML: YAML Ain't Markup Language

"What It Is: YAML is a human friendly data serialization standard for
all programming languages."

You can learn more about YAML and PyYAML here:

e The Official YAML Web Site -- http://yaml.org/
e PyYAML.org - the home of various YAML implementations for Python --

http://pyyaml.org/
e The YAML 1.2 specification -- http://yaml.org/spec/1.2/
Exercises:

1. Read the following sample YAML document. Print out the information in it:

american:

— Boston Red Sox

— Detroit Tigers

- New York Yankees
national:

- New York Mets

— Chicago Cubs

- Atlanta Braves

2. Load the YAML data used in the previous exercise, then make a modification (for
example, add "San Francisco Giants" to the National League), then dump the
modified data to a new file.

Solutions:

Page 256

www.EngineeringBooksPdf.com

A Python Book

1. Printing out information from YAML is as "simple" as printing out a Python data

structure. In this solution, we use the pretty printer from the Python standard
library:

import yaml
import pprint

def test () :
infile = open('testl.yaml')
data = yaml.load (infile)
infile.close()

pprint.pprint (data)

test ()

We could, alternatively, read in and then "load" from a string:

import yaml
import pprint

def test () :
infile = open('testl.yaml')
data_str infile.read()

infile.close ()
data = yaml.load(data_str)
pprint.pprint (data)

test ()

2. The YAML dump () function enables us to dump data to a file:

import yaml
import pprint

def test () :
infile = open('testl.yaml', 'r')
data = yaml.load(infile)
infile.close ()
data['national'].append('San Francisco Giants')
outfile = open('testl_new.yaml', 'w')
yaml.dump (data, outfile)
outfile.close ()

test ()

Notes:

o If we want to produce the standard YAML "block" style rather than the "flow"
format, then we could use:

‘ yaml .dump (data, outfile, default_flow_style=False)

Page 257

www.EngineeringBooksPdf.com

3.9.5 Json

A Python Book

Here is a quote from Wikipedia entry for Json:

"JSON (pronounced 'Jason'), short for JavaScript Object Notation, is a
lightweight computer data interchange format. It is a text-based,
human-readable format for representing simple data structures and
associative arrays (called objects)."

The Json text representation looks very similar to Python literal representation of Python
builtin data types (for example, lists, dictionaries, numbers, and strings).

Learn more about Json and Python support for Json here:

Introducing JSON -- http://json.org/
Json at Wikipedia -- http://en.wikipedia.org/wiki/Json
python-json -- http://pypi.python.org/pypi/python-json

e simplejson -- http://pypi.python.org/pypi/simplejson

Excercises:

1. Write a Python script, using your favorite Python Json implementation (for
example python—-json or simple json), that dumps the following data
structure to a file:

Data = {
'rock and roll':
['Elis', 'The Beatles', 'The Rolling Stones',],
'country':
['Willie Nelson', 'Hank Williams',]

}

2. Write a Python script that reads Json data from a file and loads it into Python data

structures.

Solutions:

1. This solution uses simplejson to store a Python data structure encoded as Json

in a file:

import simplejson as Jjson

Data = {
'rock and roll':
['Elis', 'The Beatles', 'The Rolling Stones',],
'country':
['Willie Nelson', 'Hank Williams', |

}

def test () :
fout = open('tmpdata.json', 'w')
content = json.dumps (Data)

fout.write (content)

Page 258

www.EngineeringBooksPdf.com

A Python Book

fout.write('\n")
fout.close ()

test ()

2. We can read the file into a string, then decode it from Json:

import simplejson as Jjson

def test () :
fin = open('tmpdata.json', 'r')
content = fin.read()
fin.close ()
data = json.loads (content)
print data

test ()

Note that you may want some control over indentation, character encoding, etc. For
simplejson, you can learn about that here: simplejson - JSON encoder and decoder --
http://simplejson.googlecode.com/svn/tags/simplejson-2.0.1/docs/index.html.

Page 259

www.EngineeringBooksPdf.com

A Python Book

4 Part 4 -- Generating Python Bindings for XML

This section discusses a specific Python tool, specifically a Python code generator that
generates Python bindings for XML files.

Thus, this section will help you in the following ways:

1. It will help you learn to use a specific tool, namely generateDS. py, that
generates Python code to be used to process XML instance documents of a
particular document type.

2. It will help you gain more experience with reading, modifying and using Python
code.

4.1 Introduction
Additional information:

e If you plan to work through this tutorial, you may find it helpful to look at the
sample code that accompanies this tutorial. You can find it in the distribution
under:

tutorial/
tutorial/Code/

e You can find additional information about generateDS. py here:
http://http://www.davekuhlman.org/#generateds-py

That documentation is also included in the distribution.
generateDS.py generates Python data structures (for example, class definitions) from
an XML schema document. These data structures represent the elements in an XML
document described by the XML schema. generateDS . py also generates parsers that
load an XML document into those data structures. In addition, a separate file containing
subclasses (stubs) is optionally generated. The user can add methods to the subclasses in
order to process the contents of an XML document.

The generated Python code contains:

e A class definition for each element defined in the XML schema document.

e A main and driver function that can be used to test the generated code.

e A parser that will read an XML document which satisfies the XML schema from
which the parser was generated. The parser creates and populates a tree structure
of instances of the generated Python classes.

e Methods in each class to export the instance back out to XML (method export)
and to export the instance to a literal representing the Python data structure

Page 260

www.EngineeringBooksPdf.com

A Python Book

(method exportLiteral).
Each generated class contains the following:

e A constructor method (__init__), with member variable initializers.

e Methods with names get_xyz and set_xyz for each member variable "xyz"
or, if the member variable is defined with maxOccurs="unbounded",
methods with names get_xyz, set_xyz, add_xyz, and insert_xyz.
(Note: If you use the ——use-old-getter-setter, then you will get
methods with names like getXyz and setXyz.)

e A build method that can be used to populate an instance of the class from a
node in an ElementTree or Lxml tree.

e An export method that will write the instance (and any nested sub-instances) to
a file object as XML text.

e AnexportLiteral method that will write the instance (and any nested
sub-instances) to a file object as Python literals (text).

The generated subclass file contains one (sub-)class definition for each data
representation class. If the subclass file is used, then the parser creates instances of the
subclasses (instead of creating instances of the superclasses). This enables the user to
extend the subclasses with "tree walk" methods, for example, that process the contents of
the XML file. The user can also generate and extend multiple subclass files which use a
single, common superclass file, thus implementing a number of different processes on the
same XML document type.

This document introduces the user to generateDS . py and walks the user through
several examples that show how to generate Python code and how to use that generated
code.

4.2 Generating the code

Note: The sample files used below are under the tutorial/Code/ directory.

Use the following to get help:

‘$ generateDS.py --help

I'll assume that generateDS.py is in a directory on your path. If not, you should do
whatever is necessary to make it accessible and executable.

Here is a simple XML schema document:

And, here is how you might generate classes and subclasses that provide data bindings (a
Python API) for the definitions in that schema:

‘$ generateDS.py -0 people_api.py -s people_sub.py people.xsd

Page 261

www.EngineeringBooksPdf.com

A Python Book

And, if you want to automatically over-write the generated Python files, use the —f
command line flag to force over-write without asking:

‘$ generateDS.py —-f -0 people_api.py —-s people_sub.py people.xsd

And, to hard-wire the subclass file so that it imports the API module, use the ——super
command line file. Example:

$ generateDS.py —o people_api.py people.xsd
S generateDS.py —-s people_appll.py —--super=people_api people.xsd

Or, do both at the same time with the following:

S generateDS.py —-o people_api.py -s people_appll.py
——super=people_api people.xsd

And, for your second application:

‘$ generateDS.py —-s people_appl2.py —--super=people_api people.xsd

If you take a look inside these two "application" files, you will see and import statement
like the following:

‘import ??? as supermod

If you had not used the ——super command line option when generating the
"application" files, then you could modify that statement yourself. The ——super
command line option does this for you.

You can also use the The graphical front-end to configure options and save them in a
session file, then use that session file with generateDS. py to specify your command
line options. For example:

‘$ generateDS.py —--session=test0l.session

You can test the generated code by running it. Try something like the following:

‘$ python people_api.py people.xml

or:

‘$ python people_appll.py people.xml

Why does this work? Why can we run the generated code as a Python script? -- If you
look at the generated code, down near the end of the file you'll find amain () function
that calls a function named parse (). The parse function does the following:

1. Parses your XML instance document.
2. Uses your generated API to build a tree of instances of the generated classes.
3. Uses the export () methods in that tree of instances to print out (export) XML

Page 262

www.EngineeringBooksPdf.com

A Python Book

that represents your generated tree of instances.
Except for some indentation (ignorable whitespace), this exported XML should be the
same as the original XML document. So, that gives you a reasonably thorough test of
your generated code.

And, the code in that parse () function gives you a hint of how you might build your
own application-specific code that uses the generated API (those generated Python
classes).

4.3 Using the generated code to parse and export an XML document

Now that you have generated code for your data model, you can test it by running it as an
application. Suppose that you have an XML instance document peoplel . xml that
satisfies your schema. Then you can parse that instance document and export it (print it
out) with something like the following:

‘$ python people_api.py peoplel.xml

And, if you have used the ——super command line option, as I have above, to connect
your subclass file with the superclass (API) file, then you could use the following to do
the same thing:

‘$ python people_appll.py peoplel.xml

4.4 Some command line options you might want to know

You may want to merely skim this section for now, then later refer back to it when some
of these options are are used later in this tutorial. Also, remember that you can get
information about more command line options used by generateDS . py by typing:

‘$ python generateDS.py —--help

and by reading the document at http://www.davekuhlman.org/#generateds-py
0

Generate the superclass module. This is the module that contains the implementation
of each class for each element type. So, you can think of this as the implementation of
the "data bindings" or the API for XML documents of the type defined by your XML
schema.

Generate the subclass module. You might or might not need these. If you intend to
write some application-specific code, you might want to consider starting with these
skeleton classes and add your application code there.

Page 263

www.EngineeringBooksPdf.com

A Python Book

super

This option inserts the name of the superclass module into an import statement in
the subclass file (generated with "-s"). If you know the name of the superclass file in
advance, you can use this option to enable the subclass file to import the superclass
module automatically. If you do not use this option, you will need to edit the subclass
module with your text editor and modify the import statement near the top.

root-element="'element-name"'’

Use this option to tell generateDS.py which of the elements defined in your XM
schema is the "root" element. The root element is the outer-most (top-level) element
in XML instance documents defined by this schema. In effect, this tells your
generated modules which element to use as the root element when parsing and
exporting documents.

generateDS. py attempts to guess the root element, usually the first element
defined in your XML schema. Use this option when that default is not what you want.

member-specs=listldict

Suppose you want to write some code that can be generically applied to elements of
different kinds (element types implemented by several different generated classes. If
so, it might be helpful to have a list or dictionary specifying information about each
member data item in each class. This option does that by generating a list or a
dictionary (with the member data item name as key) in each generated class. Take a
look at the generated code to learn about it. In particular, look at the generated list or
dictionary in a class for any element type and also at the definition of the class
_MemberSpec generated near the top of the API module.

version

Ask generateDS. py to tell you what version it is. This is helpful when you want
to ask about a problem, for example at the generateds-users email list
(https://lists.sourceforge.net/lists/listinfo/generateds-users), and want to specify which
version you are using.

4.5 The graphical front-end

There is also a point-and-click way to run generateDS. It enables you to specify the
options needed by generateDS. py through a graphical interface, then to run
generateDS. py with those options. It also

You can run it, if you have installed generateDS, by typing the following at a
command line:

Page 264

www.EngineeringBooksPdf.com

A Python Book

‘$ generateds_gui.py

After configuring options, you can save those options in a "session" file, which can be
loaded later. Look under the Fi1e menu for save and load commands and also consider
using the "--session" command line option.

Also note that generateDS. py itself supports a "--session" command line option that

enables you to run generateDS . py with the options that you specified and saved with

the graphical front-end.

4.6 Adding application-specific behavior

generateDS. py generates Python code which, with no modification, will parse and
then export an XML document defined by your schema. However, you are likely to want

to go beyond that. In many situations you will want to construct a custom application that

processes your XML documents using the generated code.

4.6.1 Implementing custom subclasses

One strategy is to generate a subclass file and to add your application-specific code to
that. Generate the subclass file with the "-s" command line flag:

‘$ generateDS.py —-s myapp.py people.xsd

Now add some application-specific code to myapp . py, for example, if you are using the

included "people" sample files:

class peopleTypeSub (supermod.people) :
def _ _init_ (self, comments=None, person=None, programmer=None,
python_programmer=None, java_programmer=None) :
supermod.people.__init__ (self, comments, person, programmer,
python_programmer,
java_programmer)
def fancyexport (self, outfile):
outfile.write ('Starting fancy export')
for person in self.get_person() :
person. fancyexport (outfile)
supermod.people.subclass = peopleTypeSub
end class peopleTypeSub

class personTypeSub (supermod.person) :
def _ _init_ (self, vegetable=None, fruit=None, ratio=None,

id=None, wvalue=None,

name=None, interest=None, category=None, agent=None,
promoter=None,

description=None) :

supermod.person._ _init__ (self, vegetable, fruit, ratio, id,
value,

Page 265

www.EngineeringBooksPdf.com

A Python Book

name, interest, category, agent, promoter, description)
def fancyexport (self, outfile):
outfile.write ('Fancy person export —-— name: %S
self.get_name (),)
supermod.person.subclass = personTypeSub
end class personTypeSub

'3

4.6.2 Using the generated "API" from your application
In this approach you might do things like the following:

e import your generated classes.

e Create instances of those classes.

e Link those instances, for example put "children" inside of a parent, or add one or
more instances to a parent that can contain a list of objects (think "maxOccurs"
greater than 1 in your schema)

Get to know the generated export API by inspecting the generated code in the superclass
file. That's the file generated with the "-0" command line flag.

What to look for:

e Look at the arguments to the constructor (__init__) to learn how to initialize
an instance.

e Look at the "getters" and "setters" (methods name getxxx and set xxx, to learn
how to modify member variables.

e Look for a method named addxxx for members that are lists. These correspond
to members defined with maxOccurs="n", where n > 1.

e Look at the build methods: build, buildChildren, and
buildAttributes. These will give you information about how to construct
each of the members of a given element/class.

Now, you can import your generated API module, and use it to construct and manipulate
objects. Here is an example using code generated with the "people" schema:

import sys
import people_api as api

def test (names) :
people = api.peopleType ()
for count, name in enumerate (names) :
id = '$d'" $ (count + 1,)
person = api.personType (name=name, id=id)
people.add_person (person)
people.export (sys.stdout, 0)

test (['albert', 'betsy', 'charlie'])

Run this and you might see something like the following:

Page 266

www.EngineeringBooksPdf.com

A Python Book

S python tmp.py
<people >
<person id="1">
<name>albert</name>
</person>
<person 1id="2">
<name>betsy</name>
</person>
<person id="3">
<name>charlie</name>
</person>
</people>

4.6.3 A combined approach

Note: You can find examples of the code in this section in these files:

tutorial/Code/upcase_names.py
tutorial/Code/upcase_names_appl.py

Here are the relevant, modified subclasses (upcase_names_appl.py):

import people_api as supermod

class peopleTypeSub (supermod.peopleType) :
def _ _init_ (self, comments=None, person=None,
specialperson=None, programmer=None, python_programmer=None,
java_programmer=None) :
super (peopleTypeSub, self)._ init__ (comments, person,
specialperson, programmer, python_programmer, java_programmer,)
def upcase_names (self) :
for person in self.get_person() :
person.upcase_names ()
supermod.peopleType.subclass = peopleTypeSub
end class peopleTypeSub

class personTypeSub (supermod.personType) :
def __init__ (self, vegetable=None, fruit=None, ratio=None,
id=None, value=None, name=None, interest=None, category=None,
agent=None, promoter=None, description=None, range_=None,
extensiontype_=None) :
super (personTypeSub, self)._ init_ (vegetable, fruit, ratio,
id, value, name, interest, category, agent, promoter, description,
range_, extensiontype_,)
def upcase_names (self) :
self.set_name (self.get_name () .upper())
supermod.personType.subclass = personTypeSub
end class personTypeSub

Notes:

e These classes were generated with the "-s" command line option. They are

Page 267

www.EngineeringBooksPdf.com

Here is

A Python Book

subclasses of classes in the module people_api, which was generated with the
"-0" command line option.

The only modification to the skeleton subclasses is the addition of the two
methods named upcase_names ().

In the subclass peopleTypeSub, the method upcase_names () merely walk
over its immediate children.

In the subclass personTypeSub, the method upcase_names () just converts
the value of its "name" member to upper case.

the application itself (upcase_names.py):

def

def

import sys
import upcase_names_appl as appl

create_people (names) :
people = appl.peopleTypeSub ()
for count, name in enumerate (names) :

id = '%d' % (count + 1,)
person = appl.personTypeSub (name=name, id=id)

people.add_person (person)
return people

main () :
names = ['albert', 'betsy', 'charlie']
people = create_people (names)

print 'Before:'
people.export (sys.stdout, 1)
people.upcase_names ()

print '-' * 50

print 'After:'

people.export (sys.stdout, 1)

main ()

Notes:

The create_people () function creates a peopleTypeSub instance with
several personTypeSub instances inside it.

And, when you run this mini-application, here is what you might see:

$ python upcase_names.py
Before:

<people >

<person id="1">
<name>albert</name>

</person>

<person id="2">
<name>betsy</name>

</person>

<person 1id="3">
<name>charlie</name>

Page 268

www.EngineeringBooksPdf.com

A Python Book

</person>
</people>
After:
<people >
<person id="1">
<name>ALBERT</name>
</person>
<person id="2">
<name>BETSY</name>
</person>
<person id="3">
<name>CHARLIE</name>
</person>
</people>

4.7 Special situations and uses

4.7.1 Generic, type-independent processing

There are times when you would like to implement a function or method that can perform
operations on a variety of members and that needs type information about each member.

You can get help with this by generating your code with the "--member-specs" command
line option. When you use this option, generateDS . py add a list or a dictionary
containing an item for each member. If you want a list, then use "--member-specs=list",
and if you want a dictionary, with member names as keys, then use
"--member-specs=dict".

Here is an example -- In this example, we walk the document/instance tree and convert
all string simple types to upper case.

Here is a schema (Code /member_specs.xsd):

<?xml version="1.0"7?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element name="contact-list" type="contactlistType" />

<xs:complexType name="contactlistType">

<xs:sequence>

<xs:element name="description" type="xs:string" />
<xs:element name="contact" type="contactType"
maxOccurs="unbounded" />

</xs:sequence>

<xs:attribute name="locator" type="xs:string" />
</xs:complexType>

<xs:complexType name="contactType">

Page 269

www.EngineeringBooksPdf.com

A Python Book

<xs:sequence>
<xs:element name="first-name" type="xs:string"/>
<xs:element name="last-name" type="xs:string"/>
<xs:element name="interest" type="xs:string"
maxOccurs="unbounded" />
<xs:element name="category" type="xs:integer"/>
</xs:sequence>
<xs:attribute name="id" type="xs:integer" />
<xs:attribute name="priority" type="xs:float" />
<xs:attribute name="color-code" type="xs:string" />
</xs:complexType>

</xXs:schema>

4.7.1.1 Step 1 -- generate the bindings

We generate code with the following command line:

$ generateDS.py —-f \
-0 member_specs_api.py \
-s member_specs_upper.py \
——super=member_specs_api \
——member—-specs=1list \
member_specs.xsd

Notes:

e We generate the member specifications as a list with the command line option
——member-specs=11ist.

e We generate an "application" module with the —s command line option. We'll put
our application specific code in member_specs_upper.py.

4.7.1.2 Step 2 -- add application-specific code

And, here is the subclass file (member_specs_upper.py, generated with the "-s"
command line option), to which we have added a bit of code that converts any string-type
members to upper case. You can think of this module as a special "application" of the
generated classes.

#!/usr/bin/env python

#
member_specs_upper.py

#

#
Generated Tue Nov 9 15:54:47 2010 by generateDS.py version 2.2a.
#

import sys

Page 270

www.EngineeringBooksPdf.com

A Python Book

import member_specs_api as supermod

etree_ = None
Verbose_import_ = False
(XMLParser_import_none, XMLParser_import_lxml,
XMLParser_import_elementtree
) = range (3)
XMLParser_import_library = None
try:
lxml
from 1lxml import etree as etree_
XMLParser_import_library = XMLParser_import_lxml
if Verbose_import_:
print ("running with lxml.etree")
except ImportError:
try:
cElementTree from Python 2.5+
import xml.etree.cElementTree as etree_
XMLParser_import_library = XMLParser_ import_elementtree
if Verbose_import_:
print ("running with cElementTree on Python 2.5+")
except ImportError:
try:
ElementTree from Python 2.5+
import xml.etree.ElementTree as etree_
XMLParser_import_library = XMLParser_ import_elementtree
if Verbose_import_:
print ("running with ElementTree on Python 2.5+")
except ImportError:
try:
normal cElementTree install
import cElementTree as etree_
XMLParser_import_library =
XMLParser_import_elementtree
if Verbose_import_:
print ("running with cElementTree")
except ImportError:
try:
normal ElementTree install
import elementtree.ElementTree as etree_
XMLParser_import_library =
XMLParser_import_elementtree
if Verbose_import_:
print ("running with ElementTree")
except ImportError:
raise ImportError ("Failed to import ElementTree
from any known place")

def parsexml_ (*args, **kwargs):
if (XMLParser_ import_library == XMLParser_import_lxml and
'parser' not in kwargs) :
Use the 1lxml ElementTree compatible parser so that, e.g.,

Page 271

www.EngineeringBooksPdf.com

A Python Book

we ignore comments.

kwargs['parser'] = etree_.ETCompatXMLParser ()
doc = etree_.parse(*args, **kwargs)
return doc

#
Globals
#

ExternalEncoding = 'ascii'

#
Utility funtions needed in each generated class.

#

def upper_elements (obj) :
for item in obj.member_data_ items_:

if item.get_data_type() == 'xs:string':
name = remap (item.get_name ())
vall = getattr (obj, name)

if isinstance(vall, list):
for idx, val2 in enumerate (vall):
vall[idx] = val2.upper ()
else:
setattr (obj, name, vall.upper())

def remap (name) :
newname = name.replace('-', '_")
return newname

#
Data representation classes
#

class contactlistTypeSub (supermod.contactlistType) :
def __init__ (self, locator=None, description=None, contact=None) :
super (contactlistTypeSub, self).__init__ (locator,
description, contact,)
def upper (self):
upper_elements (self)
for child in self.get_contact() :
child.upper ()
supermod.contactlistType.subclass = contactlistTypeSub
end class contactlistTypeSub

class contactTypeSub (supermod.contactType) :
def _ _init_ (self, priority=None, color_code=None, id=None,
first_name=None, last_name=None, interest=None, category=None) :
super (contactTypeSub, self)._ _init__ (priority, color_code,
id, first_name, last_name, interest, category,)
def upper (self):

Page 272

www.EngineeringBooksPdf.com

A Python Book

upper_elements (self)
supermod.contactType.subclass = contactTypeSub
end class contactTypeSub

def get_root_tag(node) :
tag = supermod.Tag_pattern_.match (node.tag) .groups () [—-1]
rootClass = None
if hasattr (supermod, tag):
rootClass = getattr (supermod, taqg)
return tag, rootClass

def parse(inFilename) :
doc = parsexml_ (inFilename)
rootNode = doc.getroot ()
rootTag, rootClass = get_root_tag(rootNode)
if rootClass is None:
rootTag = 'contact-list'
rootClass = supermod.contactlistType
rootObj = rootClass.factory ()
rootObj.build (rootNode)
Enable Python to collect the space used by the DOM.
doc = None
sys.stdout.write ('<?xml version="1.0" 2>\n"')
rootObj.export (sys.stdout, 0, name_=rootTag,
namespacedef_="'")
doc = None
return rootObj

def parseString (inString) :
from StringIO import StringIO
doc = parsexml_ (StringIO(inString))
rootNode = doc.getroot ()
rootTag, rootClass = get_root_tag(rootNode)
if rootClass is None:
rootTag = 'contact-list'
rootClass = supermod.contactlistType
rootObj = rootClass.factory ()
rootObj.build (rootNode)
Enable Python to collect the space used by the DOM.
doc = None
sys.stdout.write ('<?xml version="1.0" ?>\n"')
rootObj.export (sys.stdout, 0, name_=rootTag,
namespacedef_="'")
return rootObj

def parseliteral (inFilename) :
doc = parsexml_ (inFilename)
rootNode = doc.getroot ()
rootTag, rootClass = get_root_tag(rootNode)

Page 273

www.EngineeringBooksPdf.com

A Python Book

wnw

if

if rootClass is None:
rootTag = 'contact-list'
rootClass = supermod.contactlistType
rootObj = rootClass.factory ()
rootObj.build (rootNode)
Enable Python to collect the space used by the DOM.
doc = None
sys.stdout.write ('#from member_specs_api import *\n\n')
sys.stdout.write ('import member_specs_api as model_\n\n')

sys.stdout.write ('rootObj] = model_.contact_list (\n')
rootObj.exportLiteral (sys.stdout, 0, name_="contact_list")
sys.stdout.write(')\n")

return rootObj

USAGE_TEXT = """
Usage: python ???.py <infilename>

def usage() :

print USAGE_TEXT
sys.exit (1)

def main () :

args = sys.argv[l:]

if len(args) != 1:
usage ()

infilename = args[0]

root = parse (infilename)

name_ == '_ main__ ':
#import pdb; pdb.set_trace ()
main ()

Notes:

4.7.1.3

We add the functions upper_elements and remap that we use in each
generated class.

Notice how the function upper_elements calls the function remap only on

those members whose type is xs: string.

In each generated (sub-)class, we add the methods that walk the DOM tree and

apply the method (upper) that transforms each xs : st ring value.

Step 3 -- write a test/driver harness

Here is a test driver (member_specs_test .py) for our (mini-) application:

#!/usr/bin/env python

Page 274

www.EngineeringBooksPdf.com

A Python Book

#
member_ specs_test.py

#

import sys
import member_ specs_api as supermod
import member_specs_upper

def process (inFilename) :

doc = supermod.parsexml_(inFilename)

rootNode = doc.getroot ()

rootClass = member_specs_upper.contactlistTypeSub

rootObj = rootClass.factory ()

rootObj.build (rootNode)

Enable Python to collect the space used by the DOM.

doc = None

sys.stdout.write ('<?xml version="1.0" 2>\n"')

rootObj.export (sys.stdout, 0, name_="contact-list",
namespacedef_="'")

rootObj.upper ()

sys.stdout.write('-' * 60)

sys.stdout.write('\n"')

rootObj.export (sys.stdout, 0, name_="contact-list",
namespacedef_='")

return rootOb7j

USAGE_MSG = """\
Synopsis:
Sample application using classes and subclasses generated by
generateDS.py
Usage:

python member_specs_test.py infilename
nmmn

def usage() :
print USAGE_MSG
sys.exit (1)

def main () :

args = sys.argv[l:]

if len(args) != 1:
usage ()

infilename = args[0]

process (infilename)

if name == ' main U g
main ()

Notes:

e We copy the function parse () from our generated code to serve as a model for

Page 275

www.EngineeringBooksPdf.com

A Python Book

our function process ().

e After parsing and displaying the XML instance document, we call method
upper () in the generated class contactlistTypeSub in order to walk the
DOM tree and transform each xs: st ring to uppercase.

4.7.1.4 Step 4 -- run the test application

We can use the following command line to run our application:

‘$ python member_ specs_test.py member_specs_data.xml

When we run our application, here is the output:

$ python member_specs_test.py member_specs_data.xml
<?xml version="1.0" ?>
<contact-1list locator="http://www.rexx.com/~dkuhlman">
<description>My list of contacts</description>
<contact priority="0.050000" color-code="red" id="1">
<first-name>arlene</first—-name>
<last—-name>Allen</last—-name>
<interest>traveling</interest>
<category>2</category>
</contact>
</contact-list>
<contact-list locator="HTTP://WWW.REXX.COM/~DKUHLMAN">
<description>MY LIST OF CONTACTS</description>
<contact priority="0.050000" color-code="RED" id="1">
<first-name>ARLENE</first—-name>
<last-name>ALLEN</last-name>
<interest>TRAVELING</interest>
<category>2</category>
</contact>
</contact-1list>

Notes:

e The output above shows both before- and after-version of exporting the parsed
XML instance document.

4.8 Some hints

The following hints are offered for convenience. You can discover them for yourself
rather easily by inspecting the generated code.

4.8.1 Children defined with maxOccurs greater than 1

If a child element is defined in the XML schema with maxOccurs="unbounded" or
a value of maxOccurs greater than 1, then access to the child is through a list.

Page 276

www.EngineeringBooksPdf.com

A Python Book

4.8.2 Children defined with simple numeric types

If a child element is defined as a numeric type such as xs:integer, xs: float, or
xs:double or as a simple type that is (ultimately) based on a numeric type, then the
value is stored (in the Python object) as a Python data type (int, float, etc).

4.8.3 The type of an element's character content

But, when the element itself is defined as mixed="true" or the element a restriction of
and has a simple (numeric) as a base, then the valueOf__ instance variable holds the
character content and it is always a string, that is it is not converted.

4.8.4 Constructors and their default values

All parameters to the constructors of generated classes have default parameters.
Therefore, you can create an "empty" instance of any element by calling the constructor
with no parameters.

For example, suppose we have the following XML schema:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element name="plant-list" type="PlantList" />

<xs:complexType name="PlantType">
<xs:sequence>
<xs:element name="description" type="xs:string" />
<xs:element name="catagory" type="xs:integer" />
<xs:element name="fertilizer" type="FertilizerType"
maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="identifier" type="xs:string" />
</xs:complexType>

<xs:complexType name="FertilizerType">
<xs:sequence>
<xs:element name="name" type="xs:string"/>
<xs:element name="description" type="xs:string"/>
</xs:sequence>
<xs:attribute name="id" type="xs:integer" />
</xs:complexType>

</xs:schema>

And, suppose we generate a module with the following command line:

‘$./generateDS.py —-o garden_api.py garden.xsd

Page 277

www.EngineeringBooksPdf.com

A Python Book

Then, for the element named P1lant Type in the generated module named
garden_api.py, you can create an instance as follows:

>>> import garden_api

>>> plant = garden_api.PlantType ()
>>> import sys

>>> plant.export (sys.stdout, 0)
<PlantType/>

Page 278

www.EngineeringBooksPdf.com

	1 Part 1 -- Beginning Python
	1.1 Introductions Etc
	1.1.1 Resources
	1.1.2 A general description of Python
	1.1.3 Interactive Python

	1.2 Lexical matters
	1.2.1 Lines
	1.2.2 Comments
	1.2.3 Names and tokens
	1.2.4 Blocks and indentation
	1.2.5 Doc strings
	1.2.6 Program structure
	1.2.7 Operators
	1.2.8 Also see
	1.2.9 Code evaluation

	1.3 Statements and inspection -- preliminaries
	1.4 Built-in data-types
	1.4.1 Numeric types
	1.4.2 Tuples and lists
	1.4.3 Strings
	1.4.3.1 The new string.format method
	1.4.3.2 Unicode strings

	1.4.4 Dictionaries
	1.4.5 Files
	1.4.6 Other built-in types
	1.4.6.1 The None value/type
	1.4.6.2 Boolean values
	1.4.6.3 Sets and frozensets

	1.5 Functions and Classes -- A Preview
	1.6 Statements
	1.6.1 Assignment statement
	1.6.2 import statement
	1.6.3 print statement
	1.6.4 if: elif: else: statement
	1.6.5 for: statement
	1.6.6 while: statement
	1.6.7 continue and break statements
	1.6.8 try: except: statement
	1.6.9 raise statement
	1.6.10 with: statement
	1.6.10.1 Writing a context manager
	1.6.10.2 Using the with: statement

	1.6.11 del
	1.6.12 case statement

	1.7 Functions, Modules, Packages, and Debugging
	1.7.1 Functions
	1.7.1.1 The def statement
	1.7.1.2 Returning values
	1.7.1.3 Parameters
	1.7.1.4 Arguments
	1.7.1.5 Local variables
	1.7.1.6 Other things to know about functions
	1.7.1.7 Global variables and the global statement
	1.7.1.8 Doc strings for functions
	1.7.1.9 Decorators for functions

	1.7.2 lambda
	1.7.3 Iterators and generators
	1.7.4 Modules
	1.7.4.1 Doc strings for modules

	1.7.5 Packages

	1.8 Classes
	1.8.1 A simple class
	1.8.2 Defining methods
	1.8.3 The constructor
	1.8.4 Member variables
	1.8.5 Calling methods
	1.8.6 Adding inheritance
	1.8.7 Class variables
	1.8.8 Class methods and static methods
	1.8.9 Properties
	1.8.10 Interfaces
	1.8.11 New-style classes
	1.8.12 Doc strings for classes
	1.8.13 Private members

	1.9 Special Tasks
	1.9.1 Debugging tools
	1.9.2 File input and output
	1.9.3 Unit tests
	1.9.3.1 A simple example
	1.9.3.2 Unit test suites
	1.9.3.3 Additional unittest features
	1.9.3.4 Guidance on Unit Testing

	1.9.4 doctest
	1.9.5 The Python database API
	1.9.6 Installing Python packages

	1.10 More Python Features and Exercises

	2 Part 2 -- Advanced Python
	2.1 Introduction -- Python 201 -- (Slightly) Advanced Python Topics
	2.2 Regular Expressions
	2.2.1 Defining regular expressions
	2.2.2 Compiling regular expressions
	2.2.3 Using regular expressions
	2.2.4 Using match objects to extract a value
	2.2.5 Extracting multiple items
	2.2.6 Replacing multiple items

	2.3 Iterator Objects
	2.3.1 Example - A generator function
	2.3.2 Example - A class containing a generator method
	2.3.3 Example - An iterator class
	2.3.4 Example - An iterator class that uses yield
	2.3.5 Example - A list comprehension
	2.3.6 Example - A generator expression

	2.4 Unit Tests
	2.4.1 Defining unit tests
	2.4.1.1 Create a test class.

	2.5 Extending and embedding Python
	2.5.1 Introduction and concepts
	2.5.2 Extension modules
	2.5.3 SWIG
	2.5.4 Pyrex
	2.5.5 SWIG vs. Pyrex
	2.5.6 Cython
	2.5.7 Extension types
	2.5.8 Extension classes

	2.6 Parsing
	2.6.1 Special purpose parsers
	2.6.2 Writing a recursive descent parser by hand
	2.6.3 Creating a lexer/tokenizer with Plex
	2.6.4 A survey of existing tools
	2.6.5 Creating a parser with PLY
	2.6.6 Creating a parser with pyparsing
	2.6.6.1 Parsing comma-delimited lines
	2.6.6.2 Parsing functors
	2.6.6.3 Parsing names, phone numbers, etc.
	2.6.6.4 A more complex example

	2.7 GUI Applications
	2.7.1 Introduction
	2.7.2 PyGtk
	2.7.2.1 A simple message dialog box
	2.7.2.2 A simple text input dialog box
	2.7.2.3 A file selection dialog box

	2.7.3 EasyGUI
	2.7.3.1 A simple EasyGUI example
	2.7.3.2 An EasyGUI file open dialog example

	2.8 Guidance on Packages and Modules
	2.8.1 Introduction
	2.8.2 Implementing Packages
	2.8.3 Using Packages
	2.8.4 Distributing and Installing Packages

	2.9 End Matter
	2.9.1 Acknowledgements and Thanks
	2.9.2 See Also

	3 Part 3 -- Python Workbook
	3.1 Introduction
	3.2 Lexical Structures
	3.2.1 Variables and names
	3.2.2 Line structure
	3.2.3 Indentation and program structure

	3.3 Execution Model
	3.4 Built-in Data Types
	3.4.1 Numbers
	3.4.1.1 Literal representations of numbers
	3.4.1.2 Operators for numbers
	3.4.1.3 Methods on numbers

	3.4.2 Lists
	3.4.2.1 Literal representation of lists
	3.4.2.2 Operators on lists
	3.4.2.3 Methods on lists
	3.4.2.4 List comprehensions

	3.4.3 Strings
	3.4.3.1 Characters
	3.4.3.2 Operators on strings
	3.4.3.3 Methods on strings
	3.4.3.4 Raw strings
	3.4.3.5 Unicode strings

	3.4.4 Dictionaries
	3.4.4.1 Literal representation of dictionaries
	3.4.4.2 Operators on dictionaries
	3.4.4.3 Methods on dictionaries

	3.4.5 Files
	3.4.6 A few miscellaneous data types
	3.4.6.1 None
	3.4.6.2 The booleans True and False

	3.5 Statements
	3.5.1 Assignment statement
	3.5.2 print statement
	3.5.3 if: statement exercises
	3.5.4 for: statement exercises
	3.5.5 while: statement exercises
	3.5.6 break and continue statements
	3.5.7 Exceptions and the try:except: and raise statements

	3.6 Functions
	3.6.1 Optional arguments and default values
	3.6.2 Passing functions as arguments
	3.6.3 Extra args and keyword args
	3.6.3.1 Order of arguments (positional, extra, and keyword args)

	3.6.4 Functions and duck-typing and polymorphism
	3.6.5 Recursive functions
	3.6.6 Generators and iterators

	3.7 Object-oriented programming and classes
	3.7.1 The constructor
	3.7.2 Inheritance -- Implementing a subclass
	3.7.3 Classes and polymorphism
	3.7.4 Recursive calls to methods
	3.7.5 Class variables, class methods, and static methods
	3.7.5.1 Decorators for classmethod and staticmethod

	3.8 Additional and Advanced Topics
	3.8.1 Decorators and how to implement them
	3.8.1.1 Decorators with arguments
	3.8.1.2 Stacked decorators
	3.8.1.3 More help with decorators

	3.8.2 Iterables
	3.8.2.1 A few preliminaries on Iterables
	3.8.2.2 More help with iterables

	3.9 Applications and Recipes
	3.9.1 XML -- SAX, minidom, ElementTree, Lxml
	3.9.2 Relational database access
	3.9.3 CSV -- comma separated value files
	3.9.4 YAML and PyYAML
	3.9.5 Json

	4 Part 4 -- Generating Python Bindings for XML
	4.1 Introduction
	4.2 Generating the code
	4.3 Using the generated code to parse and export an XML document
	4.4 Some command line options you might want to know
	4.5 The graphical front-end
	4.6 Adding application-specific behavior
	4.6.1 Implementing custom subclasses
	4.6.2 Using the generated "API" from your application
	4.6.3 A combined approach

	4.7 Special situations and uses
	4.7.1 Generic, type-independent processing
	4.7.1.1 Step 1 -- generate the bindings
	4.7.1.2 Step 2 -- add application-specific code
	4.7.1.3 Step 3 -- write a test/driver harness
	4.7.1.4 Step 4 -- run the test application

	4.8 Some hints
	4.8.1 Children defined with maxOccurs greater than 1
	4.8.2 Children defined with simple numeric types
	4.8.3 The type of an element's character content
	4.8.4 Constructors and their default values

