
T E C H N O L O G Y I N A C T I O N ™

Practical Linux
with Raspberry
Pi OS

Quick Start
—
Ashwin Pajankar

Practical Linux with
Raspberry Pi OS

Quick Start

Ashwin Pajankar

Practical Linux with Raspberry Pi OS: Quick Start

ISBN-13 (pbk): 978-1-4842-6509-3 ISBN-13 (electronic): 978-1-4842-6510-9
https://doi.org/10.1007/978-1-4842-6510-9

Copyright © 2021 by Ashwin Pajankar

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 NY
Plaza, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6509-3.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Ashwin Pajankar
Nashik, Maharashtra, India

https://doi.org/10.1007/978-1-4842-6510-9

I dedicate this book to Subrahmanyan Chandrasekhar,
a great Indian-American astrophysicist.

v

Table of Contents

Chapter 1: Introduction to Raspberry Pi ���1

Single-Board Computers ���2

Raspberry Pi ��2

Linux and Distributions ���5

Raspberry Pi OS ���6

Raspberry Pi OS Setup ��6

Preparing the SD Card Manually��14

Booting Up the Pi Board for the First Time ��17

Configuring the RPi Board ���18

Connecting Various RPi Board Models to the Internet ��29

Summary���34

Chapter 2: Getting Ready ��35

Operating System Shell ���36

Raspberry Pi OS GUI ��36

The Command Prompt ��38

Updating the RPi OS ��39

About the Author ���xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

Introduction ��xvii

vi

Linux Filesystem ���39

Remotely Accessing the RPi��43

Summary���51

Chapter 3: Directory Commands and Text Editors ������������������������������53

Absolute and Relative Paths ���54

Commands: pwd, tree, and cd ���54

Command: ls ���57

Command: touch ���60

Various Text Editors ���61

Create and Delete Directories ���62

Case-Sensitive Names of Directories and Files ��64

Summary���65

Chapter 4: More Commands ���67

Configuring the RPi Board ���68

What Is sudo? ��69

Getting Help on Commands ��69

Network-Related Commands ��70

Commands: File Operations ��73

Printing a String ��75

Control Operators ��75

Filename Globbing ��77

Command: History ���78

Pipes ���78

Summary���79

Table of ConTenTs

vii

Chapter 5: Useful Unix Commands and Tools �������������������������������������81

Shell and Environment Variables ��81

Useful Linux Commands ���83

Useful Unix Tools ���86

Summary���89

Chapter 6: Shell Scripting ���91

Unix File Permissions ��92

Command: nohup ��94

Beginning Shell Scripting ��95

User Input ��96

Expressions in the Shell ��97

If Statement ��99

Switch Case ��101

Length of a Shell Variable ���102

Command-Line Arguments ���102

Function ��103

Loops in the Shell ���104

Comparing Strings ��106

File Operations ��108

Summary���110

Chapter 7: I/O Redirection and Cron ���111

I/O Redirection ��111

stdin ���112

stdout ��112

Stderr ���113

Table of ConTenTs

viii

Crontab ���114

Summary���116

Chapter 8: Introduction to High- Level Programming Languages �����117

C and C++ Programming ��118

Python Programming Language ��120

History of the Python Programming Language ��120

Python Enhancement Proposals ��121

Applications of Python ���122

Python 3 on Debian Derivatives ��123

Python Modes ���123

Interactive Mode ��127

Script Mode ���128

Summary���131

Chapter 9: Programming with RPi GPIO ���133

General-Purpose Input/Output Pins ��133

Programming with GPIO ��138

Summary���141

Chapter 10: Explore the RPi OS GUI ��143

GUI Utilities on the RPi OS ���143

Other Desktop Environments ��145

XFCE ��145

KDE Plasma ���148

Summary���150

Table of ConTenTs

ix

 Appendix: Additional Tools ���151

 Raspberry Pi Imager ���151

 Additional Utilities ���152

 Manjaro Linux ���153

 FreeBSD ��153

 Additional OSs ���153

 Index ���155

Table of ConTenTs

xi

About the Author

Ashwin Pajankar holds a Master of Technology from IIIT Hyderabad.

He started programming and tinkering with electronics at the tender age

of 7. BASIC (Beginners’ All-Purpose Symbolic Instruction Code) was the

first programming language he worked with. He was gradually exposed

to C programming, 8085, and x86 assembly programming during his

higher secondary schooling. He is proficient in x86 assembly, C, C++, Java,

Python, and Linux shell programming. He is also proficient with Raspberry

Pi, Arduino, BBC Micro Bit, and other single-board computers (SBCs) and

microcontrollers. Ashwin is passionate about training and mentoring. He

has trained more than 100,000 trainees and professionals through live

training sessions and online training courses. He has published more than

a dozen books with both international and Indian publishers. He has also

reviewed numerous books and educational video courses. This is his sixth

book with Apress, and he is working on more books. He regularly conducts

programming boot camps and hands-on training for software companies

in Nashik, India.

He is also an avid YouTuber with more than 10,000 subscribers to his

channel. You can find him on LinkedIn.

xiii

About the Technical Reviewer

Massimo Nardone has more than 22 years of experiences in security, web/

mobile development, the cloud, and IT architecture. His true IT passions

are security and Android.

He has been programming and teaching how to program with Android,

Perl, PHP, Java, VB, Python, C/C++, and MySQL for more than 20 years.

He holds a Master of Science in Computing Science from the

University of Salerno, Italy.

He has worked as a project manager, software engineer, research

engineer, chief security architect, information security manager,

PCI/SCADA auditor, and senior lead IT security/cloud/SCADA architect

for many years.

xv

Acknowledgments
I am thankful to Mr. Massimo Nardone, the technical reviewer of the book.

I want to express my gratitude toward him for helping me make this book

better. I would also like to express my gratitude to the Apress team. Aaron

Black helped with the coordination of the entire book process, and Jessica

Vakili guided the editorial process. James Markham helped me with the

editorial review. I am also thankful to Celestin Suresh and Aditee Mirashi

for giving me an opportunity to write this book.

xvii

I have been working with Raspberry Pi since 2014. I was introduced

to it while volunteering as an organizer at a hackathon at my former

workplace. And as I have mentioned in my author biography, I have

decent experience with assembly programming, microcontrollers,

and digital electronics since my time as an undergraduate student

of computer science. Raspberry Pi and Arduino are great choices for

someone who wants the best of both of the worlds of computer science

and electronics. Additionally, if you wish to use Linux, C, Python, and

shell programming to drive your motors, LEDs, and other peripherals,

then Raspberry Pi and similar single-board computers are the best fit for

your applications.

While this is an introductory book for beginners who are new to the

world of SBCs and hardware hacking, once you follow the book in detail,

you will be very much comfortable exploring the world of SBCs and

Raspberry Pi on your own.

This entire book is based on the challenges and struggles I faced

while working the very first time with Raspberry Pi (abbreviated as RPi

hereafter). I have listed all the tips and tricks I learned while exploring

the RPi in the first few months. At that time, I really wished that I could

get a book that would make my journey easier and so decided to write

one myself. So, when the opportunity presented itself, I compiled all my

experiences in this book so that anyone looking for help to get started with

Raspberry Pi can benefit from this.

Introduction

xviii

While this book primarily covers the RPi OS flavor of Linux, I have

made sure that I also introduce the readers to other important topics,

such as programming with high-level languages like C, C++, and Python.

I also introduce readers to GPIO (General-Purpose Input/Output)

programming and various buses. Finally, I cover installation of a few

popular Linux desktop environments such as XFCE, LXDE, and KDE

Plasma. The appendix covers a few additional tips and tricks.

I hope that the book serves the readers well and they will enjoy the

book as much as I enjoyed writing it.

InTroduCTIon

1© Ashwin Pajankar 2021
A. Pajankar, Practical Linux with Raspberry Pi OS,
https://doi.org/10.1007/978-1-4842-6510-9_1

CHAPTER 1

Introduction to
Raspberry Pi
I hope you have gone through the Table of Contents and Introduction. If

not, I highly recommend you go through them. This is the very first chapter

of the book, and I welcome you all to the exciting journey of learning Linux

with the Raspberry Pi Operating System.

In this chapter, we will learn the details about the most popular

platform and single-board computer family of our times, the Raspberry

Pi. Then we will learn a bit about Linux and the distribution of Linux that

is popularly used with the Raspberry Pi family (hereafter, I will use the

abbreviation RPi), the Raspberry Pi Operating System. We will learn how

to install it on a RPi board. The following is the list of the topics that we will

learn in this chapter:

• Single-board computers

• Raspberry Pi

• Linux and distributions

• Raspberry Pi OS setup

• Configuring the RPi board

• Connecting various RPi board models to the Internet

After completing this chapter, we will be comfortable with the

installation and the basic usage of the RPi board and the RPi OS.

https://doi.org/10.1007/978-1-4842-6510-9_1#DOI

2

 Single-Board Computers
Single-board computers (also known as SBCs) have all the components

of a fully functioning computer like the processor, GPU, RAM, and I/O on

a single printed circuit board. This is in contrast with desktop or laptop

computers that have a motherboard which has various slots for RAM, the

processor, and the graphics card. Desktop or laptop computers can be

upgraded by replacing processors and graphics cards. We can also add

more RAM chips in the RAM slots. However, SBCs cannot be upgraded like

that. This is one of the major differences between traditional desktops/

laptops that are totally modular and SBCs. The key benefit of the lack of

modularity of SBCs is that the size of an entire computer is very small.

Most of the SBCs are a little bigger than a regular credit/debit card, and

they are very compact.

SBCs are used as technology demonstrators (prototypes), educational

computers, and embedded systems. There is a recent surge in the

popularity of SBCs due to advances in the fabrication process and

manufacturing technologies. We are living in an era where a new SBC or

a new version of an existing one is announced almost on a monthly basis.

The market is full of various SBCs and SBC families. A few prominent

SBC families are Raspberry Pi, Banana Pro, BeagleBoards, and Orange

Pi. Raspberry Pi is the most popular family of single-board computers

available in the market, and it is one of the best-selling computers in the

world. In the next section, we will have an overview of the Raspberry Pi

family of computers.

 Raspberry Pi
Raspberry Pi is a family of SBCs developed by the Raspberry Pi Foundation

(www.raspberrypi.org/). It consists of many board models, and all the

current models under production are listed on the foundation’s products

Chapter 1 IntroduCtIon to raspberry pI

http://www.raspberrypi.org/

3

page (www.raspberrypi.org/products/). Throughout the book, I will be

using a Raspberry Pi 4 Model B (the latest board model in the family) with

4 GB RAM.

Table 1-1 lists the specifications of the Raspberry Pi 4 Model B.

Table 1-1. Technical Specifications of Raspberry Pi 4 B

Component Specification

processor broadcom bCM2711, quad-core Cortex-a72 (arM v8)

64-bit soC at 1.5 Ghz

raM Lpddr4-3200 sdraM (2 Gb or 4 Gb or 8 Gb)

networking 2.4 Ghz and 5.0 Ghz Ieee 802.11ac wireless, bluetooth

5.0, bLe

Gigabit ethernet

usb 2 usb 3.0 ports, 2 usb 2.0 ports

General-purpose

Input/output

raspberry pi standard 40-pin GpIo header

display 2 micro-hdMI ports (up to 4kp60 supported)

two-lane MIpI display serial Interface port (www.mipi.

org/specifications/dsi)

Camera connector two-lane MIpI Camera serial Interface port

audio Four-pole stereo audio and composite video port

secondary storage Microsd card slot for os and data storage

power 5 V dC via usb-C connector or 5 V dC via GpIo header

(minimum 3a)

Chapter 1 IntroduCtIon to raspberry pI

http://www.raspberrypi.org/products/
http://www.mipi.org/specifications/dsi
http://www.mipi.org/specifications/dsi

4

There are many models of the boards in this family that are currently

under production, and if you visit the hobby electronics store near

your home, you may find older out-of-production board models at a

bargain price. To keep it brief, I will be discussing the technicalities and

specifications of the other models only when needed. We can purchase

Raspberry Pi boards at authorized retailers (the list can be found in the

products page) or at popular ecommerce websites such as Amazon.

Figure 1-1 shows a RPi 4 B board.

Figure 1-1. Photograph of a RPi 4 B board

Figure 1-2 shows schematics of the components of RPi 4 B.

Chapter 1 IntroduCtIon to raspberry pI

5

Throughout this book, I will be explaining all the demonstrations using

a 4 GB RAM model of this board.

 Linux and Distributions
Linux is a family of open source Unix-like free operating systems. It is

based on the Linux kernel, a free and open source operating system kernel

by Linus Torvalds. The Linux OS is packaged in a Linux distribution. A

Linux distribution includes the Linux kernel developed and supporting

system software, libraries, and APIs for programmers. Many of these

components are part of the GNU Project (www.gnu.org/home.en.html),

and that is why many people refer to Linux as GNU/Linux. As Linux is free

and open source, anyone can create a custom distribution of Linux.

Figure 1-2. Components on a RPi 4 B board

Chapter 1 IntroduCtIon to raspberry pI

http://www.gnu.org/home.en.html

6

The following URLs have more information about GNU and Linux

projects:

www.linux.org/

www.gnu.org/

www.fsf.org/

The top 25 distributions of Linux can be found here:

www.linux.org/pages/download/

 Raspberry Pi OS
The Raspberry Pi Operating System is a derivative of a popular Linux

distribution known as Debian. It is officially provided by the Raspberry Pi

Foundation, and it is the most recommended operating system for the RPi

family of SBCs. It is fully optimized for the RPi board models, and all the

board models are supported by it. Formerly, it was known as the Raspbian

OS, and it was created by Peter Green and Mike Thompson. In this chapter,

we will learn in detail how to install the RPi OS on a microSD card and how

to boot up a Pi board with that microSD card. The DistroWatch page about

the OS can be found here: https://distrowatch.com/table.php?distrib

ution=raspios.

 Raspberry Pi OS Setup
As we have seen already, the Raspberry Pi OS is the most preferred OS

for the Pi boards. In this section, we will learn how to set up the RPi OS

on RPi boards. Though I will be using a RPi 4 B 4 GB model for all the

demonstrations, for the convenience of the readers, we will discuss the

setup process for all the board models ever produced by the foundation

except the compute modules. Let us see all the components needed for

the setup one by one:

Chapter 1 IntroduCtIon to raspberry pI

http://www.linux.org/
http://www.gnu.org/
http://www.fsf.org/
http://www.linux.org/pages/download/
https://distrowatch.com/table.php?distribution=raspios
https://distrowatch.com/table.php?distribution=raspios

7

 1) We need a RPi board of any model.

 2) We need an appropriate power supply. For

Raspberry Pi 4 B, we need a USB-C power supply.

Figure 1-3 is an image of a USB-C male pin.

Figure 1-3. USB-C male header

The Raspberry Pi Foundation has an official

15.3 W power supply for RPi 4 B. We can find more

information at www.raspberrypi.org/products/

type-c-power-supply/.

All other models of RPi boards need to be supplied

by a micro-USB power supply. Figure 1-4 is an

image of a micro-USB male pin.

Chapter 1 IntroduCtIon to raspberry pI

http://www.raspberrypi.org/products/type-c-power-supply/
http://www.raspberrypi.org/products/type-c-power-supply/

8

The Raspberry Pi Foundation has an official

universal power supply. We can find more

information at www.raspberrypi.org/products/

raspberry-pi-universal-power-supply/.

 3) We also need a pair of a USB mouse and a USB

keyboard. A USB keyboard and mouse combo that

uses a sing USB port is preferred. It is available in

the form of a keyboard with a built-in mousepad as

shown in Figure 1-5.

Figure 1-4. Micro-USB male pin

Chapter 1 IntroduCtIon to raspberry pI

http://www.raspberrypi.org/products/raspberry-pi-universal-power-supply/
http://www.raspberrypi.org/products/raspberry-pi-universal-power-supply/

9

The board models RPi Zero and RPi Zero W have

only a single micro-USB port, so this is mandatory

for such models if we want to use them with a

keyboard and a mouse. Also, for RPi Zero and

RPi Zero W, we need a USB to micro-USB OTG

converter as shown in Figure 1-6.

Figure 1-6. A USB OTG converter

Figure 1-5. A USB keyboard with a built-in mousepad

Chapter 1 IntroduCtIon to raspberry pI

10

 4) The RPi board models use a microSD card to store

OS and data. RPi 1 Model A and RPi 1 Model B use

a SD card, and the rest of the models use a microSD

card. We can get more information about the SD

cards and compatibility at www.raspberrypi.org/

documentation/installation/sd-cards.md and

https://elinux.org/RPi_SD_cards. I recommend

to purchase a class 10 card of 16 GB size. Also

purchase a microSD to SD card converter if you are

using RPi 1 Model A and RPi 1 Model B. Figure 1-7

is an image of a microSD card with a microSD to SD

card converter.

Figure 1-7. A microSD card and a microSD to SD card converter

Chapter 1 IntroduCtIon to raspberry pI

http://www.raspberrypi.org/documentation/installation/sd-cards.md
http://www.raspberrypi.org/documentation/installation/sd-cards.md
https://elinux.org/RPi_SD_cards

11

 5) We need a HDMI or a VGA monitor for display.

 6) All the models of RPi boards except the models RPi 4

B, RPi Zero, and RPi Zero W have HDMI output and

can be directly connected to a HDMI monitor with

a HDMI male-to-male cable. A HDMI male pin is

shown in Figure 1-8.

Figure 1-8. A HDMI male head

RPi 4 B has micro-HDMI output. So we need a

micro-HDMI to HDMI converter. RPi Zero and RPi

Zero W have got mini-HDMI output. So, for them, we

need a mini-HDMI to HDMI converter. Figure 1-9

shows us the HDMI, mini-HDMI, and micro-HDMI

male pins, respectively.

Chapter 1 IntroduCtIon to raspberry pI

12

Figure 1-10 is an image of a HDMI to VGA converter,

a mini-HDMI to HDMI converter, and a micro-

HDMI to HDMI converter.

Figure 1-10. Various types of HDMI converters

Figure 1-9. Various types of HDMI male pins

Chapter 1 IntroduCtIon to raspberry pI

13

If we are using a VGA monitor, then we need to use

the HDMI to VGA converter shown in the preceding

image.

 7) We need a SD card reader. Many laptops have a

built-in SD card reader. If your laptop does not have

one, you need a separate card reader. Figure 1-11 is

a representational image of a SD card reader.

Figure 1-11. SD card reader

 8) Finally, we need a computer with the Windows,

Linux, or macOS operating system.

Chapter 1 IntroduCtIon to raspberry pI

14

 Preparing the SD Card Manually
Preparing the SD card manually is recommended as it gives us the full

control, and we can change the settings before the very first booting of the

board. For that, the Raspberry Pi Foundation provides us a utility known as

the Raspberry Pi Imager. It can be downloaded from www.raspberrypi.

org/downloads/. It is available for Windows, Linux, and macOS. Download

it and install it on your OS. Once you open it, it shows the window in

Figure 1-12.

Figure 1-12. Raspberry Pi Imager window

As we can see in Figure 1-12, we have an option for choosing a SD

card. Insert the microSD card you have into the card reader device or the

card reader slot of your laptop. The Imager will detect it. Then click the

CHOOSE OS button. It will open the window in Figure 1-13.

Chapter 1 IntroduCtIon to raspberry pI

http://www.raspberrypi.org/downloads/
http://www.raspberrypi.org/downloads/

15

We can see the options for various operating systems. We need to

choose the second option, Raspberry Pi OS (other). Then it shows the

options displayed in Figure 1-14.

Figure 1-13. Option for choosing the OS

Figure 1-14. More choices under Raspberry Pi OS (other)

Chapter 1 IntroduCtIon to raspberry pI

16

Choose Raspberry Pi OS Full (32-bit). Then click the button labeled as

WRITE. It will start writing the OS to the microSD card as shown in Figure 1-15.

Figure 1-15. Writing the OS to the microSD card

Once the OS is written to the microSD card, safely remove the card

from the SD card reader and reinsert it. In the Windows OS, it will show as

a drive with the label boot. In this drive, there is a file labeled as config.txt.

This file stores all the options related to booting, and it acts in the same

way as the BIOS (Basic Input/Output System) to initialize the booting. In

case we are using a HDMI monitor, we do not have to modify the settings.

But if we are using a VGA monitor, we need to make changes to a few lines

as follows:

• Change #disable_overscan=1 to disable_overscan=1.

• Change #hdmi_force_hotplug=1 to hdmi_force_hotplug=1.

• Change #hdmi_group=1 to hdmi_group=2.

Chapter 1 IntroduCtIon to raspberry pI

17

• Change #hdmi_mode=1 to hdmi_mode=16.

• Change #hdmi_drive=2 to hdmi_drive=2.

• Change #config_hdmi_boost=4 to config_hdmi_

boost=4.

• Save the file.

By default, the commented options (which have the symbol # at the

beginning) are disabled. We must enable these options by uncommenting

their respective lines by removing the symbol # at the beginning of these

commented lines.

 Booting Up the Pi Board for the First Time
Let us boot up our RPi board for the first time with the microSD card we

prepared. The following are the steps:

• Insert the microSD card into the microSD card slot of

the RPi board. RPi 1 Model A and RPi 1 Model B have

slots for a SD card. So, for these board models, we must

use a microSD to SD card converter. Insert the microSD

card into the microSD to SD card converter and then

insert the converter into the RPi 1 Model A and RPi 1

Model B SD card slot.

• Connect the Pi to the HDMI monitor. As discussed

earlier, in case you a VGA have monitor, connect it

using the HDMI to VGA converter.

• Connect the USB mouse and USB keyboard. It is

recommended to have a single keyboard with a

mousepad. For RPi Zero or RPi Zero W, you need to first

connect it to a USB OTG cable and then connect the

USB OTG cable to the RPi Zero or RPi Zero W board.

Chapter 1 IntroduCtIon to raspberry pI

18

• Connect the RPi board to an appropriate power supply

(we have discussed this earlier). Connect the monitor

to a power source too. Make sure that the power to the

RPi board and the monitor is switched off at this point.

• Check all the connections once and then switch on the

power supply of the RPi and the monitor.

At this stage, our RPi board will start booting up. We will see a

green light blinking on the Pi board. It means that it is booting up. Well,

congratulations on our very first success!

Note If the hdMI monitor is showing the message No Signal
and not showing any visual output, then power down the rpi board
and change the line #hdmi_force_hotplug=1 to hdmi_force_
hotplug=1 in the file /boot/config.txt on the microsd card.
boot up the rpi again with this changed setting, and the hdMI
monitor will definitely show the output.

 Configuring the RPi Board
Once the RPi boots for the first time, it will show a configuration wizard

window as shown in Figure 1-16.

Chapter 1 IntroduCtIon to raspberry pI

19

Click the button Next, and the window in Figure 1-17 will appear.

Figure 1-17. Country and Language

Figure 1-16. Welcome window

Chapter 1 IntroduCtIon to raspberry pI

20

In the preceding image, set the Country and the Language; it will

automatically select the Timezone according to the Country selected. We

can change that too if we wish. Click the Next button, and the window in

Figure 1-18 will appear.

Here, we can change the default password of the user pi if we want. If

we leave it blank, then it will retain the default password. Click the Next

button, and it will show the window in Figure 1-19.

Figure 1-18. Change the password

Chapter 1 IntroduCtIon to raspberry pI

21

Check the checkbox if black borders are visible at the edges of the

desktop view. The Raspberry Pi OS will correct it on the next boot. The

window in Figure 1-20 will appear after we click the Next button only if the

RPi board model has WiFi.

Figure 1-19. Set Up Screen window

Figure 1-20. WiFi network selection window

Chapter 1 IntroduCtIon to raspberry pI

22

Choose the WiFi network for which you know the credentials and click

the Next button, and the window in Figure 1-21 will appear.

Figure 1-21. WiFi network password

Enter the password of the selected WiFi network and click the Next

button. It will show Update Software window as shown in Figure 1-22.

Figure 1-22. Update Software window

Chapter 1 IntroduCtIon to raspberry pI

23

If we click the Next button, then it will update the RPi OS. We will learn

how to do it manually in the next chapter. For now, we will skip this by

clicking the Skip button. It will then show the window in Figure 1-23.

Figure 1-23. Setup Complete

This means that the configuration is successful. We need to configure a

few more settings manually before a reboot, so click the Later button.

In the top-left corner of the desktop, we see a Raspberry icon. It is the

menu for the Raspberry Pi OS, and it functions in the same way as the

Windows logo in the Microsoft Windows OS. Click that Raspberry logo

and navigate to Preferences ➤ Raspberry Pi Configuration as shown in

Figure 1-24.

Chapter 1 IntroduCtIon to raspberry pI

24

Figure 1-24. Raspberry Pi Configuration in the RPi OS menu

Clicking the option shown in the preceding image will open the

configuration window shown in Figure 1-25.

Chapter 1 IntroduCtIon to raspberry pI

25

Figure 1-25. Raspberry Pi Configuration window

Click the tab Interfaces and it will show options for interfaces as shown

in Figure 1-26.

Chapter 1 IntroduCtIon to raspberry pI

26

Figure 1-26. Raspberry Pi Interfaces window

In this window, click the Enable radio buttons for the options

Camera, SSH, and VNC. Then click the Performance tab and it will show

performance options as shown in Figure 1-27.

Chapter 1 IntroduCtIon to raspberry pI

27

The option to overclock through this utility is disabled for many board

models. Here, we can set the GPU memory. I recommend setting it to

128 MB. This much amount of RAM is used by GPU as video memory

(RPi does not have a dedicated GPU memory). Finally, click the

Localisation tab and it will show Localization options as shown in

Figure 1-28.

Figure 1-27. Raspberry Pi Performance

Chapter 1 IntroduCtIon to raspberry pI

28

Here, we can set the options as per our localization requirements.

Once all these settings are changed as per our choice, we can reboot

the RPi board by clicking the last button labeled as Shutdown in the RPi

OS. It opens the window in Figure 1-29.

Figure 1-28. Raspberry Pi Localisation

Figure 1-29. Raspberry Pi Shutdown options

Chapter 1 IntroduCtIon to raspberry pI

29

Just click the Reboot button, and the RPi will reboot. All our changes

will take effect after the reboot is completed. If we have not changed the

default password for the user pi, then at startup, the message in Figure 1-30

will be shown.

Figure 1-30. Raspberry Pi warning message after booting to the
desktop

 Connecting Various RPi Board Models
to the Internet
We can directly plug in the Ethernet cable to the RJ45 Ethernet port on

the RPi boards that have it. It will automatically detect the connection

and connect to the Internet. Just make sure that DHCP (Dynamic Host

Configuration Protocol) is enabled at the WiFi router or the managed

switch or the Internet gateway. The models RPi 1 A, RPi 1 A+, RPi Zero,

RPi Zero W, and RPi 3 A+ do not have an Ethernet port. However, RPi Zero

W and RPi 3 A+ have built-in WiFi for connecting to WANs. We can use a

simple USB WiFi dongle for the rest of the models. Figure 1-31 is an image

of a USB WiFi dongle.

Chapter 1 IntroduCtIon to raspberry pI

30

Plug in this USB WiFi adapter to one of the USB ports. If the USB ports

are not enough, then use a powered USB hub. For Raspberry Pi Zero, we

need to plug in this dongle to a USB OTG cable and then plug that into the

micro-USB port of RPi Zero.

After plugging in the USB WiFi adapter, we need to open the

lxterminal utility. It is the terminal command-line utility of the RPi OS. We

can find it as a small black icon in the RPi OS's taskbar, and we can also

find it in Accessories in the RPi OS menu. Another way to invoke it is to

press Ctrl+F2. The Run window in Figure 1-32 will appear. Here, you can

type in lxterminal and then press the Enter key on the keyboard or click

the OK button.

Figure 1-31. A USB WiFi dongle

Chapter 1 IntroduCtIon to raspberry pI

31

The lxterminal is the terminal emulator for the Raspberry Pi OS, and

Figure 1-33 is a screenshot of an instance of it.

Figure 1-32. A Run window

Figure 1-33. A screenshot of the lxterminal

Chapter 1 IntroduCtIon to raspberry pI

32

Here, we can type in the Linux commands; and after typing in, we

must press the Enter key to execute the current command. Let us manually

configure the networking using this. This will also give you a decent

practice to work with the lxterminal which we will be primarily using

throughout the book.

All the network-related information is stored in a file at /etc/network/

interfaces. Do not bother yourself too much at this stage. We will learn

all these things in detail from the next chapter onward. To connect to WiFi

after plugging in the USB WiFi dongle, we need to add a few entries to this

file I mentioned. First, take the backup of the original file by executing the

following command in the lxterminal:

mv /etc/network/interfaces /etc/network/interfaces.bkp

Then we can create the network interfaces file from scratch by running

the following command:

sudo nano /etc/network/interfaces

The preceding command will open the network interfaces file with a

plaintext editor known as the nano editor. It is a simple WYSIWYG (What
You See Is What You Get) plaintext editor. Enter the following lines there:

source-directory /etc/network/interfaces.d

auto lo

iface lo inet loopback

auto wlan0

allow-hotplug wlan0

iface wlan0 inet dhcp

wpa-ssid "AshwinIon"

wpa-psk "internet1"

Chapter 1 IntroduCtIon to raspberry pI

33

After entering the lines, press Ctrl+X and then enter Y. In the

preceding settings, substitute AshwinIon with your own SSID and

internet1 with the password for the same WiFi network. Then run the

following command on the command prompt:

sudo service networking restart

It will restart the networking service and will connect to the WiFi. In

any case (Ethernet or WiFi), the RPi is assigned with a unique IP address.

We can find it out by running the Linux networking command ifconfig

at the lxterminal. The output of the command will have the IPV4 and the

MAC addresses of the RPi board.

The other way of knowing the IP address of the RPi is by checking the

active client list in the WiFi router or the managed switch to which the RPi

board is connected. Figure 1-34 is a screenshot of my WiFi router’s active

client list where we can see an entry for the RPi connected to it.

Figure 1-34. A screenshot of the active client list

The last entry corresponds to the RPi board connected to it.

Chapter 1 IntroduCtIon to raspberry pI

34

 Summary
In this chapter, we got started with the basics of Linux and the Raspberry Pi

OS. Then we installed the Raspberry Pi OS on a microSD card and learned

how to boot up various models of Raspberry Pi. We have also had a bit of

hands-on with the terminal emulator lxterminal, and we will explore this

in detail in the next chapter.

In the next chapter, we will learn the basics of the Linux filesystem

and GUI (Graphical User Interface). We will learn what an OS shell is and

how to communicate with it using the terminal emulator. We will also

learn how to update the RPi OS with commands and how to remotely

connect to it.

Chapter 1 IntroduCtIon to raspberry pI

35© Ashwin Pajankar 2021
A. Pajankar, Practical Linux with Raspberry Pi OS,
https://doi.org/10.1007/978-1-4842-6510-9_2

CHAPTER 2

Getting Ready
In the last chapter, we became familiar with single-board computers and

Raspberry Pi. We also learned the basics of Linux and the Raspberry Pi

OS. We learned how to prepare a SD card with the RPi OS and how to boot

up a RPi board with the RPi OS. We also learned a few basics of working

with the terminal emulator.

As a continuation of the last chapter, we will explore the following

concepts in this chapter:

• Operating system shell

• Raspberry Pi OS GUI

• The command prompt

• Linux filesystem

• Remotely accessing the RPi

After completing this chapter, we will be very comfortable with the

terminal emulator and shell of Linux. We will also be comfortable with the

Linux filesystem.

I would like to note one more thing. I am using a RPi 4 B with 4 GB

RAM for the demonstrations throughout the book. However, all the

demonstrations in this book will work with any RPi board model. And the

commands that are not specific to the RPi OS will run on any Debian Linux

distribution or derivative. If any command is specific to the RPi OS and not

compatible with Debian, then I will mention it in the description.

https://doi.org/10.1007/978-1-4842-6510-9_2#DOI

36

 Operating System Shell
In any operating system, a shell is a user interface for accessing a system's

services.

It takes input from the user and executes programs based on that

input. When a program finishes execution, the shell displays the program's

output.

All the operating systems have shells. An operating system can have

multiple shells. A shell can use the Command-Line Interface (CLI) (like

the Unix terminal emulator programs) or Graphical User Interface. In this

chapter, we will explore both the concepts in detail.

Command-Line Interface (or CLI)–based shells need users to

memorize the commands. We will explore a variety of commands

throughout this and the remaining chapters of this book. Shell commands

can be put together into scripts that can be used to perform a variety of

tasks on a Unix-like computer.

Graphical User Interface (or GUI)–based shells are easier to use.

Basically these use one of the varieties of the desktop environments

for Unix-like operating systems. We can read more about the desktop

environments in the article at https://itsfoss.com/best-linux-

desktop-environments/.

 Raspberry Pi OS GUI
Let us have an overview of the RPi OS GUI. We have a dedicated chapter

near the end of this book for exploring a few GUI utilities of the Raspberry

Pi OS. In this section, we are just going to have a very brief overview of the

GUI of the RPi OS. The Raspberry Pi OS uses the PIXEL desktop which

is a customized LXDE (Lightweight X11 Desktop Environment). Other

popular desktop environments for Unix-like operating systems are KDE,

GNOME, and XFCE. It is possible to use these with the RPi OS, but for the

Chapter 2 GettinG ready

https://itsfoss.com/best-linux-desktop-environments/
https://itsfoss.com/best-linux-desktop-environments/

37

sake of simplicity, we will stick to the default LXDE for our demonstrations

throughout the book.

Let us have an overview of the GUI of the RPi OS. When we boot it up,

we can see a desktop like any other Unix-like environment. The desktop

has a taskbar where we can see various options (Figure 2-1).

Figure 2-1. Raspberry Pi OS Desktop

The Raspberry fruit symbol in the leftmost corner is the RPi OS menu

where we can find all the GUI packages for making our life easier. The

globe symbol next to that is the shortcut for a web browser. The folders

symbol next to that is the shortcut for the File Explorer utility. Then the

black icon next to it is the shortcut for the lxterminal which is the default

command-line terminal emulator for the RPi OS. We have already used it

briefly for changing the networking settings.

On the right-hand side, we can see the VNC server symbol. This is

because I am accessing the desktop remotely using a Windows computer.

We will learn about it in detail in the later part of this chapter. After that,

we see a Bluetooth symbol. We can connect to a Bluetooth device of our

choice using this. The next is the WiFi symbol. We can connect to a WiFi

network of our choice. After that, we can see the audio meter for adjusting

the sound and a clock. On the desktop, the only icon is the Trash, where

you can find the recently deleted items, and they can be either recovered

or removed permanently from here. If you ever have worked with any GUI-

based operating system, you will find all this very familiar.

Chapter 2 GettinG ready

38

 The Command Prompt
We can access the command prompt by using the terminal emulator,

lxterminal. Open the lxterminal window and execute the following

command:

echo $SHELL

It will return the following output:

/bin/bash

This is the default shell of the RPi OS. It is known as the Bash shell.

The output is the location of the executable file for the program of the Bash

shell. The RPi OS has other shells. We can see them with the following

command:

ls -la /bin/*sh*

It will return the following output:

pi@raspberrypi:~ $ ls -la /bin/*sh*

-rwxr-xr-x 1 root root 925124 Apr 18 2019 /bin/bash

-rwxr-xr-x 1 root root 91896 Jan 18 2019 /bin/dash

lrwxrwxrwx 1 root root 4 Apr 18 2019 /bin/rbash -> bash

lrwxrwxrwx 1 root root 4 May 27 12:35 /bin/sh -> dash

There are four lines in the output. And as we can see, there are four

shells, namely, bash, dash, rbash, and sh. rbash and sh are nothing but the

symbolic links (represented by the -> symbol in the earlier output) to the

bash and dash shells. So the RPi OS has two shells, and Bash is the default

shell.

Do not worry too much about these commands as of now. We will

learn them in detail in the upcoming chapters.

Chapter 2 GettinG ready

39

 Updating the RPi OS
In the last chapter, we learned how to get the RPi board up and running

with the RPi OS. We had skipped the process to update the RPi OS at the

first-time configuration of the RPi. Let us update it from the command

prompt now. All the latest packages are updated in the RPi OS repository,

and we can update the RPi OS by referring to this repository using

the Internet. The following command is used to download package

information from all configured sources:

sudo apt-get update -y

This updates the information on the updated versions of packages or

their dependencies. After this, we have to run the following command:

sudo apt-get dist-upgrade -y

This command upgrades all the packages and their dependencies

and also removes all the obsolete packages. The parameter -y in both the

commands means we are entering y whenever the execution prompts for

Yes/No.

Finally, update the firmware with the following command:

sudo rpi-update

This is how we update the RPi OS and the firmware on the RPi board.

 Linux Filesystem
In this section, we will briefly discuss the Linux filesystem. The Linux

filesystem is modeled after the Unix filesystem. We can explore the

filesystem using the File Explorer. When we open the File Explorer, it

opens the visual view of the folder /home/pi. Folders are also known as

directories. Figure 2-2 is a screenshot of the File Explorer showing the /

home/pi.

Chapter 2 GettinG ready

40

We can see many folders and files in the /home/pi folder. This folder

is the home directory of the user pi. In the topmost part, under the menu

bar, we can see an address bar. There, type in the character / and press

Enter. This / is the root directory of the filesystem. The filesystems of most

of the popular Unix-like operating systems are treelike structures, and the

directory / is the root of that tree. Figure 2-3 is a File Explorer view of this

directory.

Figure 2-2. File Explorer

Chapter 2 GettinG ready

41

Here, we can see many directories under the root directory. The

following are brief descriptions of the important directories:

/bin: The /bin directory has many of the user

executable files.

/boot: This directory has a bootloader, a kernel

executable, and configuration files required to boot

a Unix-like OS on a computer. In the RPi OS, the

config.txt file has all the boot-related options.

/dev: This directory has the device files for all the

hardware devices attached to the computer.

Figure 2-3. File Explorer view of the / (root) directory

Chapter 2 GettinG ready

42

/etc: This directory contains the local system

configuration files for the host computer.

/home: This is the home directory storage for user

files. Each user has a subdirectory in this directory.

/lib: This directory has shared library files that are

required to boot the system.

/media: Here, all the new storage devices are

mounted. For example, when we attach a portable

USB drive to the RPi, it will show up here.

/mnt: This is a temporary mount point for regular

filesystems.

/opt: Optional files are located here. An example of

optional files is the vendor-supplied programs.

/root: This is not the root directory of the (/)

filesystem.

This is the home directory for the root user.

/sbin: These are the system binary files. These

are the executable programs used for system

administration.

/tmp: This is the temporary directory. It is used

by the operating system and many programs to

store temporary files. Users may also store files

temporarily in this location. Note that files stored

here may be purged by the OS without any warning.

/usr: These are shareable, read-only files, including

executable binaries and libraries, man files, and

other types of documentation.

Chapter 2 GettinG ready

43

/var: Variable data files are stored here. Examples

are log files, MySQL and other database files, web

server data files, email inboxes, and other program-

specific files.

 Remotely Accessing the RPi
We can remotely access the RPi’s desktop and command prompt. For

accessing the command prompt, we have already enabled the remote

SSH while configuring the RPi after the OS setup. We can use any SSH

client. However, I find the bitwise SSH client the most convenient. We can

install it for the Windows OS by downloading it from www.bitvise.com/

ssh-client-download. It is free of cost. Once we install it, we open it. We

can find it by typing in SSH in the search bar of Microsoft Windows. The

bitwise SSH connection window is as shown in Figure 2-4.

Chapter 2 GettinG ready

http://www.bitvise.com/ssh-client-download
http://www.bitvise.com/ssh-client-download

44

Figure 2-4. Bitwise SSH connection window

Fill in the details for the host, username, and password (pi and

raspberry is the default combination, in case you forgot). Then click the

Login button. When we log in to any new host the first time, it shows the

message in Figure 2-5.

Chapter 2 GettinG ready

45

Click the Accept and Save button. This will save the host key of the

RPi to the Windows computer, and this message will not be shown again

for the same RPi when we make a fresh connection the next time. Once

we connect, it will show us the RPi OS command prompt as shown in

Figure 2-6.

Figure 2-5. Host Key Verification Window

Chapter 2 GettinG ready

46

It also opens a File Transfer window as shown in Figure 2-7.

Figure 2-7. File Transfer Window

Figure 2-6. RPi OS command window remote access with SSH

Chapter 2 GettinG ready

47

We can simply drag and drop files from Windows to RPi and vice versa.

On the left, we have the Windows desktop for the current user, and on the

right-hand side, we have the home directory for the user pi on the RPi OS.

This is how we can access the command prompt of the RPi OS and

transfer files visually. Now, we will see how to remotely access the desktop.

The RPi OS comes with the VNC server. We have already enabled the VNC

server at the time of configuration after the installation. We just need to

install a VNC viewer on our Windows PC. It can be done by downloading

it from www.realvnc.com/en/connect/download/viewer/. We can search

for it through Windows search by typing in VNC. The window for the

application is as shown in Figure 2-8.

Figure 2-8. VNC viewer window

Chapter 2 GettinG ready

http://www.realvnc.com/en/connect/download/viewer/

48

In the menu, click File ➤ New Connection. It opens a new connection

window as shown in Figure 2-9.

Figure 2-9. Connection details

Fill in the IP address and the name that you want to set for your

connection, and click the OK button. It will create an icon corresponding

to the connection in the VNC viewer application window. Double-click it

to connect, and the window in Figure 2-10 will appear.

Chapter 2 GettinG ready

49

Just key in the username and password. Click the checkbox Remember
password so we won’t be asked again for the credentials. Finally, click the

OK button. It will open a remote desktop window as shown in Figure 2-11.

Figure 2-10. Credentials

Chapter 2 GettinG ready

50

Unless you are using very outdated networking equipment, the

response is real time and smooth. We can carry out all the GUI-related

tasks this way without needing an extra monitor.

So this is how we can access the RPi’s command prompt and desktop

remotely.

Figure 2-11. Remote desktop with the VNC viewer

Chapter 2 GettinG ready

51

 Summary
In this chapter, we learned the basics of the Linux shell, GUI, and

command prompt. We also learned how to update the RPi OS and the

firmware with commands. We finally learned how to access the command

prompt and the desktop remotely. All these topics are needed to get

started with learning the commands of the Linux operating system.

In the next chapter, we will continue our journey of exploring the Linux

operating system. We will learn some simple file- and directory-related

commands. We will also learn the basics of a few text editors.

Chapter 2 GettinG ready

53© Ashwin Pajankar 2021
A. Pajankar, Practical Linux with Raspberry Pi OS,
https://doi.org/10.1007/978-1-4842-6510-9_3

CHAPTER 3

Directory Commands
and Text Editors
In the last chapter, we learned how to work with the command prompt.

We also updated our Pi’s OS and the firmware. We learned how to

access the Pi remotely. All these skills will be very helpful to us for all the

demonstrations we will see in this and remaining chapters.

From this chapter onward, we will start learning the Linux commands.

We will learn the commands related to files and directories.

We will explore the following concepts in this chapter:

• Absolute and Relative Paths

• Commands: pwd, tree, and cd

• Command: ls

• Command: touch

• Various Text Editors

• Create and Delete Directories

• Case-Sensitive Names of Directories and Files

After completing this chapter, we will be very comfortable with

exploring the filesystem using the File Explorer as well as the command

prompt.

https://doi.org/10.1007/978-1-4842-6510-9_3#DOI

54

 Absolute and Relative Paths
When we are logged in as the user pi, if we open the File Explorer or

lxterminal utility, by default, they show us the home directory of the

user pi. The path of this directory is /home/pi. This is the absolute path.

We know that the / is the root of the filesystem. When we refer to any file

or a directory in Unix-like operating systems, it can be referred with the

absolute path. It means that it includes all the subdirectories, starting from

the root directory /. /home/pi means that in the root directory /, there is

a directory home that has a subdirectory pi. We usually write the absolute

path in code or documentation in order to avoid any confusion. For

example, config.txt is usually referred as /boot/config.txt.

The relative path of a file or a directory is the path in relation to a

directory. For example, /home/pi is the absolute path. We can also say that

just /pi is the path of the same directory relative to the /home directory.

We can paste the absolute path of a directory in the address bar of

the File Explorer utility and press the Enter key to go to that directory. We

can use the absolute path in the command prompt too to traverse to that

directory. We will see that in the next section.

 Commands: pwd, tree, and cd
We can check the name of the current directory with the command pwd.

It means present working directory. Open the lxterminal, and type in the

command

pwd

Note that all Unix-like operating systems including all the distributions

of Linux treat commands and filenames as case sensitive. Type all

the commands and filenames mentioned in this book and any other

documentation you come across as they are mentioned. A wrong case or

mixed case will return an error.

Chapter 3 DireCtory CommanDs anD text eDitors

55

The output of the command we executed is as follows:

pi@raspberrypi:~ $ pwd

/home/pi

In the preceding output, we can see pi@raspberrypi. It means that

the user pi is logged in to the computer as raspberrypi. $ is the prompt

sign, and pwd is the command. We can see the output (the present working

directory) in the next line. This is the absolute path. This is how we can see

the path of the current directory.

We have learned that the Unix filesystem is like a tree structure and

the root directory / is at the root of the filesystem. We can see this tree

structure through a command tree that shows this. If the version of the

RPi OS you are using does not have this command, then you can install it

by running the following command:

sudo apt-get install tree

APT stands for Advanced Package Tool. It is the tool to manage

software installation, removal, and upgrade in Debian and derivatives. In

order to install a new software from the repository, we have to mention its

name after sudo apt-get install. Similarly, we can remove any software

with sudo apt-get remove followed by the name of that software. For

example, have a look at the following command:

sudo apt-get remove tree

In this case, you have removed the tree utility. Install it again with the

command we learned earlier.

Execute the following command in the lxterminal in the home

directory of the pi user:

tree

The results are shown in Figure 3-1.

Chapter 3 DireCtory CommanDs anD text eDitors

56

The output shows all the directories, subdirectories, and files present

in the current directory in the form of a tree as shown in Figure 3-1.

We can traverse to any directory by running the command cd as

follows:

cd /

Executing the preceding command takes us to the root (/) directory

of the filesystem. If the directory we want to switch to is in the current

directory, we can use the relative path; otherwise, we must use the

absolute path. We can directly go to the home directory of the current user

by running the following command:

cd ~

Figure 3-1. Output of the tree command

Chapter 3 DireCtory CommanDs anD text eDitors

57

We will frequently be using this command to switch working

directories. We can go to the parent directory of the current directory with

the following command:

cd ..

In Unix and derivatives, .. refers to the parent directory of the current

directory.

 Command: ls
We have learned that we can use the command tree to show all the

files, directories, and subdirectories under the current directory in

a tree structure. There is another command, ls, that shows similar

information. It means list, and it shows the files and directories (but not

the subdirectories unless specified) in the form of a list. Run the command

as follows:

ls

It shows the following output:

Bookshelf Documents Music Public Videos

Desktop Downloads Pictures Templates

Many Unix commands can be run with options. We can pass one or

more options by typing in the command followed by an empty space and

then a hyphen sign followed by the options immediately. For example, if

we want to see the list of files and directories in a long list format, then we

can run the command as follows:

ls -l

Chapter 3 DireCtory CommanDs anD text eDitors

58

The output is as follows:

pi@raspberrypi:~ $ ls -l

total 36

drwxr-xr-x 2 pi pi 4096 May 27 12:48 Bookshelf

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Desktop

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Documents

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Downloads

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Music

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Pictures

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Public

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Templates

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Videos

Let us see more options as follows:

• -l: It is the long listing format. This outputs file types,

permissions, the number of hard links, owner, group,

size, last-modified date, and filename.

• -F: It shows the nature of a file by appending a

character after the filename. For example, * is for an

executable and / for a directory. Regular files do not

have a suffix.

• -a: It lists all the files in the given directory including

the hidden files and directories (their names start with

a . character in Unix).

• -R: This recursively lists all the subdirectories.

• -t: This sorts the list of files by modification time.

• -h: It print sizes of files in a human-readable format.

• -1: This forces the output to be one entry per line.

Chapter 3 DireCtory CommanDs anD text eDitors

59

Let us try combining a few options:

ls -la

The output is as follows:

pi@raspberrypi:~ $ ls -la

total 104

drwxr-xr-x 19 pi pi 4096 Aug 17 15:18 .

drwxr-xr-x 3 root root 4096 May 27 12:40 ..

-rw------- 1 pi pi 979 Aug 17 15:56 .bash_history

-rw-r--r-- 1 pi pi 220 May 27 12:40 .bash_logout

-rw-r--r-- 1 pi pi 3523 May 27 12:40 .bashrc

drwxr-xr-x 2 pi pi 4096 May 27 12:48 Bookshelf

drwxr-xr-x 8 pi pi 4096 Jul 22 15:35 .cache

drwx------ 6 pi pi 4096 Aug 17 12:23 .config

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Desktop

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Documents

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Downloads

drwx------ 3 pi pi 4096 May 27 13:16 .gnupg

drwxr-xr-x 2 pi pi 4096 Jul 26 11:58 .ipynb_checkpoints

drwxr-xr-x 5 pi pi 4096 Jul 26 11:58 .ipython

drwxr-xr-x 6 pi pi 4096 Jul 22 15:25 .local

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Music

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Pictures

drwx------ 3 pi pi 4096 Jul 22 15:35 .pki

-rw-r--r-- 1 pi pi 807 May 27 12:40 .profile

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Public

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Templates

drwxr-xr-x 2 pi pi 4096 May 27 13:16 Videos

drwx------ 3 pi pi 4096 Jul 15 01:58 .vnc

-rw------- 1 pi pi 56 Aug 15 08:32 .Xauthority

-rw------- 1 pi pi 2624 Aug 15 08:32 .xsession-errors

-rw------- 1 pi pi 2445 Aug 13 10:17 .xsession-errors.old

Chapter 3 DireCtory CommanDs anD text eDitors

60

In the preceding output, . refers to the current directory, and .. refers

the parent directory. All the files and directories that have . as the first

character in their names are hidden. We cannot see them in the File

Explorer too unless Hidden items is enabled. You may want to combine

different options as an exercise for this section.

 Command: touch
The command touch updates the modification date of an existing file

passed to it as a parameter. If the file does not exist, then it creates a new

empty file. For example, run the following command:

touch test.txt

It creates a file test.txt in the current directory. We can see it as

follows:

ls -l touch.txt

The output is as follows:

pi@raspberrypi:~ $ ls -l test.txt

0 -rw-r--r-- 1 pi pi 0 Aug 17 16:48 test.txt

Let’s run the command again after a minute:

ls -l touch.txt

And let’s see its output again:

pi@raspberrypi:~ $ ls -l test.txt

-rw-r--r-- 1 pi pi 0 Aug 17 16:49 test.txt

We can observe that the last updated date has changed. We can run it

with the existing filename in the parameter of the command to update the

last access date without modifying the actual file.

Chapter 3 DireCtory CommanDs anD text eDitors

61

 Various Text Editors
We have already used the nano text editor to modify the network

configuration. It is a WYSIWYG type of a plaintext editor for the command

line. Other popular command line–based text editors for Unix are vi and

vim. vi is included in the RPi OS by default. We need to install vim with the

following command:

sudo apt-get install vim -y

This installs the vim editor. We can read more about vi and vim at the

following URLs:

https://vim.rtorr.com/

https://devhints.io/vim

Both are a bit heavy for beginners. I prefer nano. If you want a GUI-

based editor for editing the text files, you can opt for Leafpad. Install it

with the following command:

sudo apt-get install leafpad -y

After the installation, we can find it in the Accessories option in the

RPi OS menu. Figure 3-2 shows this in action:

Chapter 3 DireCtory CommanDs anD text eDitors

https://vim.rtorr.com/
https://devhints.io/vim

62

Figure 3-2. Leafpad in action

 Create and Delete Directories
We can create and remove directories and files using the File Explorer. In

the File Explorer window or on the desktop, if we right-click, we can see the

menu shown in Figure 3-3.

Chapter 3 DireCtory CommanDs anD text eDitors

63

We can create new directories (folders) and new files from this menu.

Or we can use a command to create them. We have already seen how to

use the command touch to create an empty file. Let us see how to create

and remove a directory. We can use the command mkdir to create a

directory as follows:

mkdir testdir

It creates a directory named testdir in the current directory. This is an

empty directory. You can switch to it with the command cd and see it in

the parent directory with the command ls. This is an empty directory, and

an empty directory can be deleted by running any one of the following

commands:

rm -d testdir

rmdir testdir

If you have created a few files in this directory, then you can use the

command rm as follows to delete the files:

rm testfile1.txt

Figure 3-3. Options after right-clicking

Chapter 3 DireCtory CommanDs anD text eDitors

64

We can also delete a non-empty directory with all its contents as

follows:

rm -r testdir

And of course, we can anytime use the File Explorer GUI to perform

any of these operations.

 Case-Sensitive Names of Directories
and Files
Previously, I had mentioned that commands and names of directories

and files are case sensitive in Linux. Let us demonstrate that now. Run the

following commands in the lxterminal one by one:

mkdir test

mkdir Test

mkdir TEST

We can run the command ls to see these directories:

ls -lF

The output is as follows:

drwxr-xr-x 2 pi pi 4096 Aug 17 19:34 test/

drwxr-xr-x 2 pi pi 4096 Aug 17 19:34 Test/

drwxr-xr-x 2 pi pi 4096 Aug 17 19:34 TEST/

As we can see, it created all the directories with the same name.

The case of characters is different in each name, so they are treated as

different directories. In the Microsoft Windows OS, the names of files and

directories are case insensitive.

Chapter 3 DireCtory CommanDs anD text eDitors

65

We can also try to create files with the same name (with different cases

for characters in names) with the command touch to see this in action for

files. Try that as an exercise for this section.

 Summary
In this chapter, we have started with a few basic yet important commands

related to files and directories. These are very useful commands, and we

will use them frequently throughout the book.

In the next chapter, we will continue our journey and learn more Unix

commands.

Chapter 3 DireCtory CommanDs anD text eDitors

67© Ashwin Pajankar 2021
A. Pajankar, Practical Linux with Raspberry Pi OS,
https://doi.org/10.1007/978-1-4842-6510-9_4

CHAPTER 4

More Commands
In the last chapter, we learned the useful file- and directory-related

commands. We also got ourselves acquainted with a few test editors. In

that process, we also learned to use the APT utility to manage packages on

Debian.

In this chapter, we will see more Linux commands. The following is the

list of topics we will learn in this chapter:

• Configuring the RPi Board

• Getting Help on Commands

• Network-Related Commands

• Commands: File Operations

• Printing a String

• Control Operators

• Filename Globbing

• Command: History

• Pipes

After completing this chapter, we will be very comfortable with various

useful commands in Linux. This chapter will instill more confidence in

users about the command prompt.

https://doi.org/10.1007/978-1-4842-6510-9_4#DOI

68

 Configuring the RPi Board
At the time of the installation of the RPi OS, we had seen the GUI tool for

configuration of the RPi board. The command-line version of the same tool

is known as the raspi-config utility. We can invoke it with the following

command:

sudo raspi-config

The utility’s main menu is as shown in Figure 4-1.

It has all the options we learned in the graphical tool. You may want to

explore it further as an exercise for this section.

Note This command does not work in other distributions of Linux.
It is specific to the RPi OS on RPi boards.

Figure 4-1. Raspberry Pi configuration utility at the command
prompt

ChaPTeR 4 MORe COMMandS

69

 What Is sudo?
By this time, you must have noticed that we use the command sudo before

a few commands. You also might have tried to run them without sudo and

must have gotten the following error:

pi@raspberrypi:~ $ raspi-config

Script must be run as root. Try 'sudo raspi-config'

This is because a few commands and utilities need the security

privileges of another user (usually superuser or the user root throughout

this book). sudo is a program in Unix-like operating systems. It allows users

to run programs with the security privileges of another user. By default,

another user is the superuser (in our case, the user root). The command is

expanded as "substitute user do" or "superuser do."

If any command needs sudo and we run it without sudo, it returns the

error we learned in the preceding example.

 Getting Help on Commands
We can get help on various commands with the commands man and info.

We can use the command man with any other command as follows:

man ls

We will see a screen with the information of the command ls. This is

known as a man page, and it is a form of documentation in the Unix-like

systems. We can quit this documentation screen by pressing the key Q on

the keyboard.

We can find similar information using the command info as follows:

info ls

It will show the information about the usage of the command. We can

quit this information screen too by pressing the key Q on the keyboard.

ChaPTeR 4 MORe COMMandS

70

 Network-Related Commands
Let us have a look at a few network-related commands. The first command

is ifconfig. It is a system administration utility and is run at the time of

the boot. This command is used to set the IP address and netmask. If we

run it without any parameters, then it shows the network details as follows:

pi@raspberrypi:~ $ ifconfig

eth0: flags=4099<UP,BROADCAST,MULTICAST> mtu 1500

 ether dc:a6:32:12:0c:e8 txqueuelen 1000 (Ethernet)

 RX packets 0 bytes 0 (0.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 0 bytes 0 (0.0 B)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536

 inet 127.0.0.1 netmask 255.0.0.0

 inet6 ::1 prefixlen 128 scopeid 0x10<host>

 loop txqueuelen 1000 (Local Loopback)

 RX packets 17 bytes 1004 (1004.0 B)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 17 bytes 1004 (1004.0 B)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500

 inet 192.168.0.2 netmask 255.255.255.0 broadcast

192.168.0.255

 inet6 fe80::7d45:b9a:284a:26bf prefixlen 64 scopeid

0x20<link>

 ether dc:a6:32:12:0c:e9 txqueuelen 1000 (Ethernet)

 RX packets 4650 bytes 422988 (413.0 KiB)

 RX errors 0 dropped 0 overruns 0 frame 0

 TX packets 4297 bytes 2465513 (2.3 MiB)

 TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0

ChaPTeR 4 MORe COMMandS

71

Currently, the RPi is connected to a WLAN network of my home. That

is why the entries in the wlan0 section of the output (the last section) are

enabled. For wired LAN, we can check the eth0 section (the first section) in

the output.

Here, we can see important information like IPV4 and IPV6 addresses,

netmask, broadcast address, and MAC settings. We also can see details like

the number of received and sent packets.

Note The command ifconfig has many similarities to the
command ipconfig in Windows and Mac.

Another command that shows similar information is iwconfig. It

shows information about the currently connected WiFi as follows:

pi@raspberrypi:~ $ iwconfig

eth0 no wireless extensions.

lo no wireless extensions.

wlan0 IEEE 802.11 ESSID:"Ashwin_Ion"

 Mode:Managed Frequency:2.432 GHz Access Point:

6C:72:20:43:89:31

 Bit Rate=81 Mb/s Tx-Power=31 dBm

 Retry short limit:7 RTS thr:off Fragment thr:off

 Power Management:on

 Link Quality=50/70 Signal level=-60 dBm

 Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0

 Tx excessive retries:13 Invalid misc:0 Missed

beacon:0

ChaPTeR 4 MORe COMMandS

72

We can test the reachability to a host in the internal or external network

with the command ping as follows:

pi@raspberrypi:~ $ ping -c4 www.google.com

PING www.google.com (172.217.27.196) 56(84) bytes of data.

64 bytes from bom07s15-in-f4.1e100.net (172.217.27.196): icmp_

seq=1 ttl=119 time=8.80 ms

64 bytes from bom07s15-in-f4.1e100.net (172.217.27.196): icmp_

seq=2 ttl=119 time=8.15 ms

64 bytes from bom07s15-in-f4.1e100.net (172.217.27.196): icmp_

seq=3 ttl=119 time=7.86 ms

64 bytes from bom07s15-in-f4.1e100.net (172.217.27.196): icmp_

seq=4 ttl=119 time=8.03 ms

--- www.google.com ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 8ms

In the example, -c4 means we are sending four packets to the target

host. It is optional, and in its absence, the command will run indefinitely.

We can download a file from the Internet with the command wget as

follows:

wget ftp://ftp.gnu.org/pub/gnu/wget/wget-latest.tar.gz

This will download the mentioned file into the current directory. We

can see the downloaded file with the command ls as follows:

pi@raspberrypi:~ $ ls *.gz

wget-latest.tar.gz

These are a few examples of very frequently used network-related

commands in Linux.

ChaPTeR 4 MORe COMMandS

73

 Commands: File Operations
We can perform a variety of operations on files. Create an empty file and

an empty directory in the current directory with the following commands:

touch abc

mkdir practice

Let us learn a few useful commands related to files. Let us see how to copy

the file. We can copy it in the same location with a different name as follows:

cp abc abc1

We can see the original and the copy with the command ls as follows:

pi@raspberrypi:~ $ ls abc* -la

-rw-r--r-- 1 pi pi 0 Aug 22 15:33 abc

-rw-r--r-- 1 pi pi 0 Aug 22 15:33 abc1

In the output, we can see the file attributes too. We will learn about

them later in the book.

We can copy it into a folder as follows:

cp abc ./practice/

The folder (or directory) practice is in the same folder. So we can

provide the relative path. If it is not in the same folder, then we must

provide the absolute path. Also, we can copy a file from any source to any

target by providing the absolute paths.

We can rename the original file with the command mv as follows:

mv abc1 abc2

The original file will be renamed to another name. We can do this

operation between directories too just as the command cp.

ChaPTeR 4 MORe COMMandS

74

Let us see a few more commands. Open the created file in a text editor

and add 15–20 lines and save it. Then run the following command:

cat abc

It will show the contents of the file:

head abc

It shows the first ten lines. The head command shows the top lines in

any source fed to it. Here, we are working with files. We can customize how

many lines we want to see as follows:

head -5 abc

We can see the bottom lines with another command tail as follows:

tail abc

tail -5 abc

Let us study another file-related command cut in detail. It is used to

extract the sections of each line in the output. A great example is extraction

of data from a comma-separated value (CSV) file. In a CSV file, the data

is arranged in columns, and they are separated by a comma (or some

other delimiter like :). Data can be extracted by bytes, characters, or fields

separated by a delimiter. The following command extracts the first two

characters from the file:

cut -c 1-2 abc

We can use -f to choose the fields separated by a delimiter specified

by -d. We can also use -b for bytes.

ChaPTeR 4 MORe COMMandS

75

 Printing a String
We can print a string with the command echo. The following are examples:

pi@raspberrypi:~ $ echo test

test

pi@raspberrypi:~ $ echo 'test'

test

pi@raspberrypi:~ $ echo "test"

test

 Control Operators
Let us see a few control operators. Unix and derivatives have many control

operators. Let us learn them one by one.

Run the following commands in sequence:

ls

echo $?

The last command returns 0. This is because $? stores the exit code of

execution of the last command. If it is a success, it stores 0 and otherwise

other code.

We can separate two commands with a semicolon (;) as follows:

echo test1 ; echo test2

Let us see the usage of the operator &. When a line ends with it, the

shell does not wait for the command to finish execution. We get the shell

prompt back.

ChaPTeR 4 MORe COMMandS

76

Open the lxterminal program in GUI or using VNC. Then run the

command leafpad to open the text editor. You will notice that as long as the

editor is running, the command prompt is locked and not running typed-

in commands. Once we close the editor, it will run those commands one by

one (they are actually stored in a buffer). If we run the following command

leafpad &

it prints the PID (Process ID) of the program in the prompt, and the

prompt is available for us to use. It does not wait for the editor to be closed.

Let us see the usage of the operator &&. It is a logical operator. Let us

see an example as follows:

echo abc && echo xyz

When it is used between two commands, if the first command

succeeds, then the second one is executed. If the first command fails, the

second one is not executed. In the preceding example, both the commands

run fine. Let us see another example:

fecho abc && echo xyz

In this case, both the commands are not executed.

Another logical operator is ||. It is the logical OR. When placed between

two commands, if the first command succeeds, the second one is not

executed. The second command executes only if the first one fails. Check

yourself by running the following examples:

echo abc || echo xyz

fecho abc || echo xyz

We can combine both the operators in such a way that it prints a

success message if the command succeeds; otherwise, it prints a failure

message. The following is an example:

rm file1 && echo SUCCESS || echo FAIL

ChaPTeR 4 MORe COMMandS

77

Finally, we can use the backlash operator \ as an escape character. We

need to print ; on the command prompt, but the shell interprets it as end

of the command. We can avoid that using a backslash as follows:

pi@raspberrypi:~ $ echo We want to print \;

We want to print ;

 Filename Globbing
Filename globbing is a feature of the UNIX shell. It means representing

multiple filenames by using special characters called wildcards with a

single filename. A wildcard is a symbol which is used to substitute for one

or more characters. We can use wildcards to create a string that represents

multiple filenames:

• * represents zero or more characters.

• ? represents exactly one character.

Let us see a few examples. Run the following command:

ls a?c

It lists the file abc. As of now, in the home location, there is only one

file that matches this criterion. The first and the last characters in the

filename are a and c.

Let us see another example. Let us list all the files starting with

character a in the filename:

ls a*

We can also list a file with the extension txt as follows:

ls *.txt

This is how we can use filename globbing with the command ls.

ChaPTeR 4 MORe COMMandS

78

 Command: History
Operating systems maintain the history of commands executed. We can

find out the sequence of the commands executed in the shell with the

command history. The following is a sample output of the command:

 125 tail -5 abc

 126 cut cut -c 1-2 abc

 127 echo test

 128 echo 'test'

 129 echo "test"

 130 echo abc && echo xyz

 131 fecho abc && echo xyz

 132 echo abc || echo xyz

 133 fecho abc || echo xyz

 134 rm file1 && echo SUCCESS && echo FAIL

 135 rm file1 && echo SUCCESS || echo FAIL

 136 history

I have shown only the ending part of the entire output as it will fill up

several pages to show the whole output. As we can see, it shows the recent

commands executed in the command prompt.

 Pipes
Piping is a form of redirection. Using this, we can redirect the output of one

command to another. Suppose I wish to see only the history of the last ten

commands executed. Then I must use piping as follows:

history | tail -10

ChaPTeR 4 MORe COMMandS

79

In the preceding command, | is the pipe operator. We are feeding the

output of the command history to the command tail. The output is as

follows:

 131 fecho abc && echo xyz

 132 echo abc || echo xyz

 133 fecho abc || echo xyz

 134 rm file1 && echo SUCCESS && echo FAIL

 135 rm file1 && echo SUCCESS || echo FAIL

 136 history

 137 hist

 138 history

 139 ls -l

 140 history | tail -10

While writing shell scripts, pipes are usually used in a creative way to

filter the output of the commands executed.

 Summary
In this chapter, we have started with a few commands of intermediate

difficulty. These commands will be useful in writing the shell scripts which

we will study later in this book. Now we all are very comfortable with the

basic and intermediate-level use of the command prompt.

In the next chapter, we will study a few more useful commands and

more complex concepts.

ChaPTeR 4 MORe COMMandS

81© Ashwin Pajankar 2021
A. Pajankar, Practical Linux with Raspberry Pi OS,
https://doi.org/10.1007/978-1-4842-6510-9_5

CHAPTER 5

Useful Unix
Commands and Tools
In the last chapter, we learned a few more commands of intermediate

difficulty. We are very comfortable now with the command prompt and

can navigate the filesystem of Linux and other Unix-like OSs. We can use

simple file and directory commands. We are also comfortable with various

operators and piping.

In this chapter, we will learn advanced commands and tools in Unix.

The following is the list of topics we will learn in this chapter:

• Shell and environment variables

• Useful Linux commands

• Useful Unix tools

After this chapter, we will be very comfortable with advanced tools in

Unix. We will find these commands and concepts useful for learning shell

scripting in the next chapter.

 Shell and Environment Variables
Let us see how we can define variables in the shell. We can define numeric

and string types of variables as follows:

a=2

str1='ASHWIN'

https://doi.org/10.1007/978-1-4842-6510-9_5#DOI

82

We do not have to declare them as we do in programming languages

like C or Java. These variables are known as shell variables. We can access

them by prefixing the variable names with a $ symbol as follows:

echo $a

echo $str1

The preceding statements will print the values stored in the variables.

We can assign values belonging to any data type to a variable. Thus, the

variables in the shell are not confined to storing values of any single data

type.

An environment variable is a variable whose value is set with the

functionality built into the operating system or shell. An environment

variable is made up of a name and value pair. All system-related

information is stored in the environment variable. We can see the list of

environment variables by running the following command:

env

It will print a very long list of variables, and it will consume several

pages. We have already seen that the variable SHELL stores the name of the

executable file of the current shell. So we will have a look at the important

environment variables. Run the following command to know the Bash shell

version:

echo $BASH_VERSION

Run the following command to know the hostname of your RPi:

echo $HOSTNAME

Run the following command to know the location of the history file:

echo $HISTFILE

Chapter 5 UsefUl Unix Commands and tools

83

The following command returns the location of the home directory of

the current logged user (in our case, the user pi):

echo $HOME

To know the directory location the shell searches for the executable

files when we run any command, use the following command:

echo $PATH

 Useful Linux Commands
Let us see a few useful commands in Linux. The command w shows who are

logged in and what they are doing. Run the command and see the output.

The command uptime shows for how long the system is running:

pi@raspberrypi:~ $ uptime

 17:05:24 up 19:10, 3 users, load average: 0.24, 0.22, 0.18

The command who shows who is logged in:

pi@raspberrypi:~ $ who

pi tty1 2020-08-24 21:54

pi pts/0 2020-08-25 16:42 (192.168.0.100)

pi pts/1 2020-08-25 16:59 (192.168.0.100)

The command whoami prints the ID of the current user as follows:

pi@raspberrypi:~ $ whoami

pi

We can get information about the system with the following command:

pi@raspberrypi:~ $ uname -a

Linux raspberrypi 5.4.51-v7l+ #1333 SMP Mon Aug 10 16:51:40 BST

2020 armv7l GNU/Linux

Chapter 5 UsefUl Unix Commands and tools

84

We can get information about the current processes and utilization of

resources using the commands htop and top. Run them to see the output.

We can see a snapshot of current processes with the command ps:

pi@raspberrypi:~ $ ps -ef

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Aug24 ? 00:00:04 /sbin/ini

root 2 0 0 Aug24 ? 00:00:00 [kthreadd

root 3 2 0 Aug24 ? 00:00:00 [rcu_gp]

This is the partial output of the execution of the command.

The command df reports the details of the filesystem:

pi@raspberrypi:~ $ df -h

Filesystem Size Used Avail Use% Mounted on

/dev/root 15G 6.5G 7.3G 47% /

devtmpfs 1.8G 0 1.8G 0% /dev

tmpfs 1.9G 0 1.9G 0% /dev/shm

tmpfs 1.9G 8.7M 1.9G 1% /run

tmpfs 5.0M 4.0K 5.0M 1% /run/lock

tmpfs 1.9G 0 1.9G 0% /sys/fs/cgroup

/dev/mmcblk0p1 253M 54M 199M 22% /boot

tmpfs 378M 4.0K 378M 1% /run/user/1000

We can see the list of connected USB devices as follows with the

command lsusb:

pi@raspberrypi:~ $ lsusb

Bus 002 Device 001: ID 1d6b:0003 Linux Foundation 3.0 root hub

Bus 001 Device 005: ID 046d:081b Logitech, Inc. Webcam C310

Bus 001 Device 004: ID 046d:c077 Logitech, Inc. M105 Optical Mouse

Bus 001 Device 003: ID 1c4f:0002 SiGma Micro Keyboard TRACER

Gamma Ivory

Chapter 5 UsefUl Unix Commands and tools

85

Bus 001 Device 002: ID 2109:3431 VIA Labs, Inc. Hub

Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub

We can see processor information with the commands lscpu and cat

/proc/cpuinfo. Run both the commands to see the output.

We can use the following commands to see information related to

memory:

pi@raspberrypi:~ $ free -m

 total used free shared buff/cache available

Mem: 3776 121 3320 36 334 3491

Swap: 99 0 99

pi@raspberrypi:~ $ cat /proc/meminfo

MemTotal: 3867184 kB

MemFree: 3399896 kB

MemAvailable: 3575016 kB

Unix commands are binary executable files. We can locate them with

the commands which and whereis. The command which tells us the

location of a binary executable:

pi@raspberrypi:~ $ which python3

/usr/bin/python3

We can retrieve information about the man page and documentation

about the command with the command whereis as follows:

pi@raspberrypi:~ $ whereis python3

python3: /usr/bin/python3.7m /usr/bin/python3

/usr/bin/python3.7-config /usr/bin/python3.7

/usr/bin/python3.7m-config /usr/lib/python3 /usr/lib/python3.7

/etc/python3 /etc/python3.7 /usr/local/lib/python3.7

/usr/include/python3.7m /usr/include/python3.7

/usr/share/python3 /usr/share/man/man1/python3.1.gz

Chapter 5 UsefUl Unix Commands and tools

86

There is another Raspberry Pi OS–specific utility that can retrieve a lot

of system information. It is vcgencmd. We can learn more about it at www.

raspberrypi.org/documentation/raspbian/applications/vcgencmd.md.

The following are the examples of the execution:

pi@raspberrypi:~ $ vcgencmd measure_temp

temp=35.0'C

pi@raspberrypi:~ $ vcgencmd get_mem arm && vcgencmd get_mem gpu

arm=896M

gpu=128M

The first example shows the CPU temperature, and the second

example shows the memory split (in megabytes) between CPU and GPU.

 Useful Unix Tools
Let us study a few useful UNIX tools. These useful UNIX commands

are found in all the distributions of Linux and other Unix-like operating

systems. Let us create a simple CSV file for the demonstration. I have

created a small CSV file for the demo, and its contents are as follows:

pi@raspberrypi:~ $ cat abc.csv

ASHWIN, 20k, INDIA

THOR, 10k, Asgard

JANE, 15k, UK

IRON MAN, 100k, USA

We can check the statistics of the file (number of words, lines, and

characters including blank spaces) with the command wc as follows:

pi@raspberrypi:~ $ wc abc.csv

 4 13 71 abc.csv

pi@raspberrypi:~ $ wc -c abc.csv

71 abc.csv

Chapter 5 UsefUl Unix Commands and tools

http://www.raspberrypi.org/documentation/raspbian/applications/vcgencmd.md
http://www.raspberrypi.org/documentation/raspbian/applications/vcgencmd.md

87

pi@raspberrypi:~ $ wc -w abc.csv

13 abc.csv

pi@raspberrypi:~ $ wc -l abc.csv

4 abc.csv

The first example shows all the statistics of a file. The next three

examples show the counts of characters, words, and lines, respectively. We

can also use the command cut on this file for more practice. Have a look at

the following examples:

pi@raspberrypi:~ $ cut -c 2-5 abc.csv

SHWI

HOR,

ANE,

RON

pi@raspberrypi:~ $ cut -d "," -f 2- abc.csv

 20k, INDIA

 10k, Asgard

 15k, UK

 100k, USA

We can use the command grep to find patterns of texts. For example,

if I want to find my name in a text file, I can use the command grep as

follows:

pi@raspberrypi:~ $ grep ASHWIN abc.csv

ASHWIN, 20k, INDIA

If I want the search to be case insensitive, then I can use it the

following way:

pi@raspberrypi:~ $ grep -i asgard abc.csv

THOR, 10k, Asgard

Chapter 5 UsefUl Unix Commands and tools

88

We can sort data with the command sort as follows:

pi@raspberrypi:~ $ sort abc.csv

ASHWIN, 20k, INDIA

IRON MAN, 100k, USA

JANE, 15k, UK

THOR, 10k, Asgard

We can find out unique data items as follows:

pi@raspberrypi:~ $ sort abc.csv | uniq

ASHWIN, 20k, INDIA

IRON MAN, 100k, USA

JANE, 15k, UK

THOR, 10k, Asgard

To see the command in action, before running it, insert a duplicate line

in the file abc.csv:

The following are the date and calendar commands in action:

pi@raspberrypi:~ $ date

Tue 25 Aug 2020 09:03:01 PM IST

pi@raspberrypi:~ $ cal

 August 2020

Su Mo Tu We Th Fr Sa

 1

 2 3 4 5 6 7 8

 9 10 11 12 13 14 15

16 17 18 19 20 21 22

23 24 25 26 27 28 29

30 31

Chapter 5 UsefUl Unix Commands and tools

89

Finally, if we want to find a file, then we can use the command find as

follows:

pi@raspberrypi:~ $ find . -name "*.conf"

./.config/lxterminal/lxterminal.conf

./.config/lxsession/LXDE/desktop.conf

./.config/pcmanfm/LXDE/desktop-items-0.conf

The command is followed by the path (in our case, it is the current

directory, hence .) and criteria for the search. Here, we are searching for

the configuration files in the current directory.

 Summary
In this chapter, we learned many advanced Linux commands. We will use

all the commands we learned in this and previous chapters to prepare

shell scripts in the next chapter.

The next chapter will have detailed instructions on how to prepare and

execute shell scripts on Linux.

Chapter 5 UsefUl Unix Commands and tools

91© Ashwin Pajankar 2021
A. Pajankar, Practical Linux with Raspberry Pi OS,
https://doi.org/10.1007/978-1-4842-6510-9_6

CHAPTER 6

Shell Scripting
In the last chapter, we learned a few more useful commands in Unix and

the RPi OS. These commands and tools we learned are extremely useful in

writing shell scripts.

Continuing the theme of Unix and RPi OS commands of the last chapter,

we will get started with shell scripting in this chapter and continue it to the

next chapter. The following is the list of topics we will learn in this chapter:

• Unix File Permissions

• Command: nohup

• Beginning Shell Scripting

• User Input

• Expressions in the Shell

• If Statement

• Switch Case

• Length of a Shell Variable

• Command-Line Arguments

• Function

• Loops in the Shell

• Comparing Strings

• File Operations

https://doi.org/10.1007/978-1-4842-6510-9_6#DOI

92

After this chapter, we will be comfortable writing shell scripts on all

Unix-like operating systems.

 Unix File Permissions
Let us understand this concept by example. Run the following command

in the lxterminal:

ls -l

The output is as follows:

pi@raspberrypi:~ $ ls -l

total 76

drwxr-xr-x 2 pi pi 4096 Aug 20 16:10 Bookshelf

drwxr-xr-x 2 pi pi 4096 Aug 20 16:40 Desktop

drwxr-xr-x 2 pi pi 4096 Aug 20 16:40 Documents

drwxr-xr-x 2 pi pi 4096 Aug 20 16:40 Downloads

drwxr-xr-x 3 pi pi 4096 Aug 28 08:40 gnomeforpi

drwxr-xr-x 2 pi pi 4096 Aug 20 16:40 Music

drwxr-xr-x 2 pi pi 4096 Aug 20 16:40 Pictures

-rwxr-xr-x 1 pi pi 7980 Aug 29 17:36 prog00

-rw-r--r-- 1 pi pi 76 Aug 29 17:36 prog00.c

-rw-r--r-- 1 pi pi 22 Aug 29 18:38 prog00.py

-rwxr-xr-x 1 pi pi 8740 Aug 29 17:49 prog01

-rw-r--r-- 1 pi pi 93 Aug 29 17:48 prog01.cpp

drwxr-xr-x 2 pi pi 4096 Aug 20 16:40 Public

drwxr-xr-x 2 pi pi 4096 Aug 20 16:40 Templates

-rw-r--r-- 1 pi pi 3 Sep 3 16:06 test1.sh

drwxr-xr-x 2 pi pi 4096 Aug 20 16:40 Videos

Chapter 6 Shell SCripting

93

This is the Unix long list format. We have already seen this. Let us

understand the meaning of all the terms in the output. Let us see the

following two lines:

drwxr-xr-x 2 pi pi 4096 Aug 20 16:40 Pictures

-rwxr-xr-x 1 pi pi 7980 Aug 29 17:36 prog00

As we can see, there are nine columns in the output. The first column

(drwxr-xr-x and -rwxr-xr-x) tells us about the file type and permissions.

The first character is d if it is a directory and – if it is a file. The rest of the nine

characters tell us about the permissions. We will see them in detail soon.

The second column has a number. It shows the number of links. The

third and fourth columns are the owner and group names (pi and pi in

this case). The fifth column shows the size in bytes. For directories, it is

always 4 k. If you are interested, you can read more about it at https://

askubuntu.com/questions/186813/why- does- every- directory- have- a-

size- 4096- bytes- 4- k.

The next three columns are the last modification time. The last column

shows us the name of the directory or file.

Let us discuss permissions in detail. You must have noticed the first

column has a string like drwxr-xr-x. As we discussed, the first character

denotes the file type. The next nine characters can be divided into three

groups of three characters each. They are permissions to the user who

created the file/directory, user’s group, and others, respectively.

• r means read permission.

• w means write permission.

• x means execute permission.

If we encounter the – symbol anywhere, it means that permission is not

granted. So the string -rwxr-xr-x means that it is a file. The creator/owner

of the file has all (read, write, and execute) permissions. The owner’s

own group has read and execute permissions. And others have read and

Chapter 6 Shell SCripting

https://askubuntu.com/questions/186813/why-does-every-directory-have-a-size-4096-bytes-4-k
https://askubuntu.com/questions/186813/why-does-every-directory-have-a-size-4096-bytes-4-k
https://askubuntu.com/questions/186813/why-does-every-directory-have-a-size-4096-bytes-4-k

94

execute permissions. We can manually alter permissions. We usually use

numerical representation of the strings for the permissions:

• r means 4.

• w means 2.

• x means 1.

So, when we need to set permissions for a file/directory, we compute

the sum for the owner, group, and others, respectively. For example, if

I want to enable all permissions for all, then it will be rwxrwxrwx. The

numerical representation will be (4+2+1 4+2+1 4+2+1) which can be

written as 777. For reasons of security, we rarely use this. The most

common permission is rwxr--r--. It can be represented as (4+2+1 4+0+0

4+0+0) and written as 744. Another common permission format is rwxr-

xr- x. It can be represented as (4+2+1 4+0+1 4+0+1) and written as 755. We

will soon see how to grant these permissions on files and directories. We

needed to understand this concept as it is very important to know it for

executing programs on Unix-like operating systems.

 Command: nohup
nohup means No Hangup. We use this command on the command prompt

in cases where we do not want the program invoked to be terminated if we

close the command prompt. We usually use it along with the & operator.

To demonstrate this, we need to use the desktop of the RPi OS (either

directly or remotely through VNC). Open the lxterminal. And then run the

following command:

nohup idle &

It will open the IDLE (Integrated Development and Learning

Environment) editor (it is an IDE for Python 3; we will see that in the

later part of the book). Now if we close the lxterminal window, it will not

Chapter 6 Shell SCripting

95

close the IDLE editor. However, if we invoke the IDLE with the command

idle and nothing else, the IDLE will be closed if we close the lxterminal
window used to invoke it.

 Beginning Shell Scripting
Run the following command in the lxterminal:

pi@raspberrypi:~ $ echo "Hello World!"

Hello World!

As we can see, it immediately prints the output. We can create a script

that has a collection of these statements. The statements in the script

are fed to the shell interpreter and executed one by one. Such a script is

known as shell script. Let us create one. Open any text editor and paste

the command we executed there and save the file with the name prog00.
sh. Generally, we use .sh as an extension for the shell script files. It is not

necessary to have an extension. It just helps us to identify that these are

shell scripts. We can easily list all the shell scripts in a directory with the

following command:

ls *.sh

Once you create the file for the shell script, we can run it as follows:

bash prog00.sh

or

sh prog00.sh

Add the command date after the first line and run it again:

pi@raspberrypi:~ $ sh prog00.sh

Hello World!

Fri Sep 4 10:37:50 IST 2020

Chapter 6 Shell SCripting

96

This is how we can write and execute simple shell scripts.

There is another way we can run the shell scripts. We need to change

the permissions of the shell script with the following command:

chmod 755 prog00.sh

We have already discussed the meaning of the permissions

represented by 755. Now we can directly run the script using ./ as follows:

./prog00.sh

It will execute the program and print the output. We can explicitly

specify the interpreter with something known as shebang or sha-bang.

Just add #!/bin/bash as the first line of the script shown in Listing 6-1.

Listing 6-1. prog00.sh

#!/bin/bash

echo "Hello World!"

date

This way the script uses the Bash shell to run when invoked directly.

 User Input
We can accept input from a user in our shell script. In Listing 6-2, we are

using the statement read to read the user input. We are reading the input

into a variable and displaying its value. This is how we can read user input.

Listing 6-2. prog01.sh

#!/bin/bash

echo 'Who am I talking to?'

read name

echo 'Nice to meet you' $name

Chapter 6 Shell SCripting

97

 Expressions in the Shell
Just like any programming language, we can write expressions in the

shell. The following shell script (Listing 6-3) shows various ways to write

mathematical expressions in the shell.

Listing 6-3. prog02.sh

#!/bin/bash

let a=5+4

echo $a

let "a=5+4"

echo $a

let a++

echo $a

let "a=4*5"

echo $a

In this script, the first, second, and fourth expressions show us an

assignment operation, and the third expression shows us an increment

operation. We will frequently use expressions to assign values to variables

in the shell. We can also use the expr statement to evaluate the arithmetic

operations as shown in Listing 6-4.

Listing 6-4. prog03.sh

#!/bin/bash

expr 3 + 4

expr "3 + 4"

Chapter 6 Shell SCripting

98

expr 11 % 2

a=$(expr 10 - 3)

echo $a

The first and the third expr statements are arithmetic, and the second

one is a string as the operand is enclosed by double quotes. The fourth

statement is an assignment statement. Run the script and see the output.

Finally, Listing 6-5 shows a way to write expressions without let or expr.

Listing 6-5. prog04.sh

#!/bin/bash

a=$((4 + 5))

echo $a

a=$((3+5))

echo $a

b=$((a + 3))

echo $b

b=$(($a + 4))

echo $b

((b++))

echo $b

((b += 3))

echo $b

a=$((4 * 5))

echo $a

Run the script to see the output.

Chapter 6 Shell SCripting

99

 If Statement
We can have conditional statements using if. They use comparison

operators. The following are the comparison operators in Bash:

• -eq is equal to.

• -ne is not equal to.

• -lt is less than.

• -le is less than or equal to.

• -gt is greater than.

• -ge is greater than or equal to.

Listing 6-6 shows usage of the -eq operator with an if statement.

Listing 6-6. prog05.sh

#!/bin/bash

echo 'Please enter an integer: '

read a

if [$a -gt 100]

then

echo "The number is greater than 100."

fi

Run the script and see the output.

We can even have a nested if (Listing 6-7).

Chapter 6 Shell SCripting

100

Listing 6-7. prog06.sh

#!/bin/bash

echo 'Please enter an integer:'

read a

if [$a -gt 100]

then

echo 'It is greater than 100.'

if (($a % 2 == 0))

then

echo 'It is an even number.'

fi

fi

Run the script and see the output.

We can write an if-else block (Listing 6-8).

Listing 6-8. prog07.sh

#!/bin.bash

echo 'Please enter an integer:'

read a

if [$a -gt 50]

then

echo 'The number is greater than 50.'

else

echo 'The number is less than or equal to 50.'

fi

Run it to see the output. We can even write the if-elif-else statement

(Listing 6-9).

Chapter 6 Shell SCripting

101

Listing 6-9. prog08.sh

#!/bin/bash

echo 'Please enter an integer:'

read a

if [$a -gt 100]

then

echo 'The number is greater than 100.'

elif [$a -eq 100]

then

echo 'The number is equal to 100.'

else

echo 'The number is less than 100.'

fi

 Switch Case
We can have a switch case construct (like C, C++, and Java) in the shell.

Listing 6-10 is a sample of such construct.

Listing 6-10. prog09.sh

#!/bin/bash

echo 'Please input an integer:'

read a

case $a in

10)

echo Ten

;;

20)

Chapter 6 Shell SCripting

102

echo Twenty

;;

100)

echo Hundred

;;

*)

echo 'Default Case'

esac

Run the shell script to see the output.

 Length of a Shell Variable
We can use the # symbol to compute the length of a variable (Listing 6-11).

Listing 6-11. prog10.sh

#!/bin/bash

a='Hello World!'

echo ${#a}

b=12345

echo ${#b}

Execute the script to know the length of variables.

 Command-Line Arguments
Command Line Arguments are the arguments passed to any program

(in this context, a shell script) at the time of invoking that script from the

command line or any other script. Most of the modern programming

(C, C++, and Java) and scripting (shell, Perl, Python) languages have

provision for handling command-line arguments.

Chapter 6 Shell SCripting

103

In a shell script, we can use $# and $@ to handle the command-line

arguments as shown in Listing 6-12.

Listing 6-12. prog11.sh

#!/bin/bash

echo 'Total number of arguments:' $#

echo 'All argument values:' $@

echo 'Name of the script:' $0

echo 'First Argument ->' $1

echo 'Second Argument ->' $2

Run it as follows:

pi@raspberrypi:~ $ bash prog11.sh 1 "Hello World" 3.14 ASH

Total number of arguments: 4

All argument values: 1 Hello World 3.14 ASH

Name of the script: prog11.sh

First Argument -> 1

Second Argument -> Hello World

 Function
We can even write functions in shell scripts. Functions are reusable blocks

of code that are called frequently in a program. If you have a block of code

that needs to be used frequently, it makes sense to write a function around

it. Listing 6-13 shows a demonstration of a simple function.

Chapter 6 Shell SCripting

104

Listing 6-13. prog12.sh

#!/bin/bash

print_message ()

{

 echo 'Hello from function'

}

print_message

In the script, print_message() is a function, and we are calling it

exactly one time as shown. We are first defining its body and then calling

it (when we call, the brackets are not used). We can even have arguments

in functions, and they work exactly the same as command-line arguments.

You can read more about it at https://bash.cyberciti.biz/guide/Pass_

arguments_into_a_function.

 Loops in the Shell
We can write a loop using the until statement and comparison operator

as shown in Listing 6-14.

Listing 6-14. prog13.sh

#!/bin/bash

counter=0

until [$counter -gt 5]

do

 echo 'Counter:' $counter

 ((counter++))

done

Chapter 6 Shell SCripting

https://bash.cyberciti.biz/guide/Pass_arguments_into_a_function
https://bash.cyberciti.biz/guide/Pass_arguments_into_a_function

105

Run the script and it shows the following output:

pi@raspberrypi:~ $ bash prog13.sh

Counter: 0

Counter: 1

Counter: 2

Counter: 3

Counter: 4

Counter: 5

We can even have for loops as shown in Listing 6-15.

Listing 6-15. prog14.sh

#!/bin/bash

for i in 1 2 3 4 5

do

 echo 'Looping ... number' $i

done

The output is as follows:

pi@raspberrypi:~ $ bash prog14.sh

Looping ... number 1

Looping ... number 2

Looping ... number 3

Looping ... number 4

Looping ... number 5

We can compute a factorial with a for loop as shown in Listing 6-16.

Listing 6-16. prog15.sh

#!/bin/bash

echo 'Enter a number'

read num

Chapter 6 Shell SCripting

106

fact=1

for((i=2;i<=num;i++))

{

 fact=$((fact * i))

}

echo $fact

We can write the same program with a while loop as shown in

Listing 6-17.

Listing 6-17. prog16.sh

#!/bin/bash

echo 'Enter a number:'

read num

fact=1

while [$num -gt 1]

do

 fact=$((fact * num))

 num=$((num - 1))

done

echo $fact

Run all these programs to see the loops in action.

 Comparing Strings
We can compare strings in the shell with string comparison operators.

Listing 6-18 shows string comparison in action.

Chapter 6 Shell SCripting

107

Listing 6-18. prog17.sh

#!/bin/bash

a='GNU'

b='Linux'

if [$a = $b]

then

 echo "$a = $b : a is equal to b"

else

 echo "$a = $b : a is not equal to b"

fi

if [$a != $b]

then

 echo "$a = $b : a is not equal to b"

else

 echo "$a = $b : a is equal to b"

fi

if [-z $a]

then

 echo "-z $a : length of a is zero"

else

 echo "-z $a : length of a is not zero"

fi

if [-n $a]

then

 echo "-n $a : length of a is not zero"

else

 echo "-n $a : length of a is zero"

fi

Chapter 6 Shell SCripting

108

if [$a]

then

 echo "$a : string is not empty"

else

 echo "$a : string is empty"

fi

We can change the values of strings stored in variables a and b to

experiment with different outcomes.

 File Operations
We can check files for various conditions with the following operators:

• -r checks if the file is readable.

• -w checks if the file is writeable.

• -x checks if the file is executable.

• -f checks if the file is an ordinary file.

• -d checks if the file is a directory.

• -s checks if the file size is zero.

• -e checks if the file exists.

Listing 6-19 shows the usage of all these operators.

Listing 6-19. prog18.sh

#!/bin/bash

file='prog12.sh'

if [-r $file]

then

 echo 'File has read access.'

Chapter 6 Shell SCripting

109

else

 echo 'File does read access.'

fi

if [-w $file]

then

 echo 'File has write permission.'

else

 echo 'File does not have write permission.'

fi

if [-x $file]

then

 echo 'File has execute permission.'

else

 echo 'File does not have execute permission.'

fi

if [-f $file]

then

 echo 'File is an ordinary file.'

else

 echo 'File is not an ordinary file.'

fi

if [-d $file]

then

 echo 'File is a directory.'

else

 echo 'File is not a directory.'

fi

if [-s $file]

then

 echo 'File size is not zero.'

Chapter 6 Shell SCripting

110

else

 echo 'File size is zero.'

fi

if [-e $file]

then

 echo 'File exists.'

else

 echo 'File does not exist.'

fi

Run the script to see the output.

 Summary
In this chapter, we have gotten started with shell scripts in the shell. As

discussed earlier, shell scripts can be very useful tools for programmers

who are tasked to complete various activities. We have explored shell

scripts in quite detail. However, there is more to shell scripting than we

have covered. If you are entrusted with tasks related to Unix-like systems,

then you can use shell scripts at your work to get the desired results.

Mastery in scripting requires a lot of practice in real-life tasks.

In the next chapter, we will explore I/O redirection techniques and

learn about a useful utility known as crontab. We will demonstrate that

with a real-life project.

Chapter 6 Shell SCripting

111© Ashwin Pajankar 2021
A. Pajankar, Practical Linux with Raspberry Pi OS,
https://doi.org/10.1007/978-1-4842-6510-9_7

CHAPTER 7

I/O Redirection
and Cron
In the last chapter, we got started with shell scripting for Unix-like OSs. We

are comfortable with shell scripts now.

Continuing the momentum, we will learn a couple of useful features in

Unix-like operating systems’ shell. The following is the list of topics we will

learn in this chapter:

• I/O redirection

• Crontab

After this chapter, we will be comfortable using the above-mentioned

advanced features in the shell. This is a very short chapter.

 I/O Redirection
In Unix-like operating systems, standard streams are interconnected

input and output channels. The three standard interconnected channels

are standard input (stdin), standard output (stdout), and standard error

(stderr). They are attached to file handles (or file descriptors) 0, 1, and

2, respectively. Almost all the programming and scripting environments

come with provisions to handle these streams. Let us see them one by one.

https://doi.org/10.1007/978-1-4842-6510-9_7#DOI

112

 stdin
This is the standard input. In most of the cases, it is the input from the

keyboard. Let us see an example. Create a file known as New.txt in the

current location and add some characters to the file. We know that we can

show the contents of a file with the command cat as follows:

cat New.txt

We can use stdin to feed data to the cat command as follows:

cat < New.txt

It will show us the contents of the file mentioned in the command. We

know that Unix associates 0 with stdin. So the preceding command can

also be written as follows:

cat 0< New.txt

 stdout
The standard output is usually the visual display console (it could also be

the remote terminal). It is represented by the file handle 1. Suppose I wish

to redirect it to a file. Then I can write a command as follows:

ls -l 1> output.log

When we execute the preceding command, it will not show the output in

the terminal. It will redirect the output to the file mentioned in the command.

We can see the contents of that file with the cat command as follows:

cat output.log

We can also omit 1 and write the command ls -l 1> output.log as

follows:

ls -l > output.log

Chapter 7 I/O redIreCtIOn and CrOn

113

The > redirection operator overwrites previous data in the file

mentioned in the command if the file exists already. We can append to the

existing data with the >> redirection operator as follows:

ls -l 1>> output.log

ls -l >> output.log

Both the commands perform the same function.

 Stderr
We can redirect the standard error. It is represented by the file handle 2. We

can use it as follows:

ls -l 2>error.txt

It will redirect the error in the command (if any) to the file mentioned

in the command. We can also redirect it and overwrite the error log as

follows:

ls -l 2>>error.txt

We can redirect the output and error to the same file as follows:

ls -l 1>output.txt 2>&1

We can also write it as follows:

ls -l >output.txt 2>&1

A device file that rejects all information redirected to it is a null device.

In Unix-like operating systems, it is /dev/null. It is also known as the Unix

Black Hole (informally). We usually redirect error to this file. It is used as

follows:

ls -l 2>/dev/null

Chapter 7 I/O redIreCtIOn and CrOn

114

 Crontab
Cron is a time-based scheduler in Unix-like operating systems. We can

run a program or a script at a set time at regular intervals. We have to use

a file known as crontab to set cron jobs. We need to make entries for our

scheduled jobs to run. The format is as follows:

(minute) (hour) (day of the month) (month) (day of the week)
<Program or script to run>

• Minute can have values from 0 to 59.

• Hour can have values from 0 to 23.

• Day of the month can have values from 1 to 31.

• Month can have values from 1 to 12.

• Day of the week can have values from 0 to 6.

Let us see a few examples. The following entry runs the specified script

every day at midnight:

0 0 * * * /home/pi/backup.sh

We can run a script or a program at the time of every reboot as follows:

@reboot /home/pi/test2.sh

We can run a program every five minutes as follows:

*/1 * * * * /home/pi/test3.sh

We can use the following command to see the current entries in the

crontab:

crontab -l

Chapter 7 I/O redIreCtIOn and CrOn

115

We can use the following command to edit the entries in the crontab:

crontab -e

It will ask you for the choice of editor when you run it the very first

time. Choose the nano editor.

Let us see an example of a simple shell script and usage of crontab.

Let us create a small shell script as shown in Listing 7-1.

Listing 7-1. reboot_hist.sh

#!/bin/bash

logfile=reboot_hist.log

echo "System rebooted at : " >> $logfile

date >> $logfile

Change its permissions with the following command:

chmod 755 reboot_hist.sh

Finally, add the following entry to the crontab:

@reboot /home/pi/reboot_hist.sh

Then when we reboot, it will write the reboot time to the specified

log file. I rebooted a couple of times and then checked the log file. The

contents are as follows:

pi@raspberrypi:~ $ cat reboot_hist.log

System rebooted at :

Thu Sep 10 20:04:42 IST 2020

System rebooted at :

Thu Sep 10 20:07:01 IST 2020

Chapter 7 I/O redIreCtIOn and CrOn

116

 Summary
In this short chapter, we learned two advanced features of the shell: I/O

redirection and usage of crontab. We also saw a small example of the

crontab entry. Both these features are quite useful while writing shell

scripts.

With this chapter, we conclude our journey of shell scripts. In the

next chapter, we will learn how to program with high-level programming

languages like C, C++, and Python 3 on Linux.

Chapter 7 I/O redIreCtIOn and CrOn

117© Ashwin Pajankar 2021
A. Pajankar, Practical Linux with Raspberry Pi OS,
https://doi.org/10.1007/978-1-4842-6510-9_8

CHAPTER 8

Introduction to
High- Level
Programming
Languages
In the last chapter, we concluded Linux shell scripting. In this chapter, we

will learn how to write programs with high-level programming languages

like C, C++, and Python 3 with the RPi OS. The following is the list of topics

we will learn in detail in this chapter:

• C and C++ programming

• Python programming language

• Python 3 on Debian derivatives

After this chapter, we will be comfortable with writing programs using

modern programming languages on the Linux platform.

https://doi.org/10.1007/978-1-4842-6510-9_8#DOI

118

 C and C++ Programming
C and C++ are very versatile programming languages. As of now, almost

all the operating systems (to be very specific, OS kernel and device drivers)

are written in the C programming language. I have been writing C and

C++ programs on the Linux platform since 2003. I mostly use GCC (GNU

Compiler Collection) for compiling C programs using any of the Linux

distributions. Also, I use the g++ compiler for C++ on Linux. So, in this

section, I will give you a brief overview of the process of compiling using GCC

and g++ compilers. We will also see how to execute the compiled bytecode.

Both these compilers are preinstalled on the RPi OS. In case you want

to make sure, just run the following command:

sudo apt-get install build-essential

It will return a message that has the following string:

build-essential is already the newest version (12.6).

It means that GCC and g++ are already installed.

We can verify the versions with the following commands:

gcc -v

g++ -v

We can use any text editor to create and save a C program named as

prog00.c as follows:

#include<stdio.h>

int main(void)

{

 printf("Hello, World\n");

 return 0;

}

Compile it with the following command:

gcc prog00.c -o prog00

Chapter 8 IntroduCtIon to hIgh- LeveL programmIng Languages

119

Here, the string following -o is the name of the executable file for our

program. If we do not use -o followed by the filename, it creates a.out

executable file by default. Run the executable file with the following

command:

./prog00

It will print the output as follows:

Hello, World

We can also write a C++ program, prog01.cpp, as follows:

#include<iostream>

using namespace std;

int main(void)

{

cout<<"Hello, World\n";

return 0;

}

We can compile it as follows:

g++ prog01.cpp -o prog01

We can run it as follows:

./prog01

The output will be as follows:

Hello, World

This is how we can compile and run C and C++ programs on the Linux

platform. This section is no way a comprehensive guide for GCC and g++.

You may be interested in finding out more information about GCC. You

can visit the homepage of the GCC project here: https://gcc.gnu.org/.

Chapter 8 IntroduCtIon to hIgh- LeveL programmIng Languages

https://gcc.gnu.org/

120

 Python Programming Language
Python 3 is a high-level and interpreted programming language. It is a

general-purpose programming language. In this section, we will have in-

depth general discussion about the Python programming language and its

philosophy.

 History of the Python Programming Language
Python is a successor to the ABC programming language which itself is

inspired by ALGOL 68 and SETL programming languages. It was created

by Guido van Rossum as a personal side project during vacations in the

late 1980s while he was working at Centrum Wiskunde & Informatica

(CWI) (English: “National Research Institute for Mathematics and

Computer Science”) in the Netherlands. From the initial release of the

Python programming language till July 12, 2018, Guido has been the lead

developer and Benevolent Dictator for Life (BDFL) for this project. After

July 12, he has gone into permanent vacation and now works in a steering

committee for Python. The following are the important milestones in

Python’s release timeline:

• February 1991: van Rossum published the code

(labeled version 0.9.0) to alt.sources.

• January 1994: Version 1.0 was released.

• October 2000: Python 2.0 was released.

• December 2006: Python 3.0 was released.

• December 2019: Python 2.x was officially retired

and is no longer supported by the Python Software

Foundation.

Chapter 8 IntroduCtIon to hIgh- LeveL programmIng Languages

121

As we can see in the timeline, Python 2.x versions are no longer

supported, and Python 3 is the most recent. Python 3 is not backward

compatible with Python 2. Python 3 is the latest and supported version of

the Python programming language. So we will use Python 3 throughout

the book to demonstrate programs for data visualization. Unless explicitly

mentioned, Python means Python 3 throughout this book.

 Python Enhancement Proposals
For steering the development, maintenance, and support of Python, the

Python leadership came up with the concept of Python Enhancement

Proposals (PEPs). They are the primary mechanism for suggesting new

features and fixing issues in the Python project. We can read more about

the PEPs at the following URLs:

www.python.org/dev/peps/

www.python.org/dev/peps/pep- 0001/

 Philosophy of the Python Programming Language

The philosophy of Python is detailed in PEP20. It is known as the Zen of
Python which can be found at www.python.org/dev/peps/pep- 0020/. The

following are the points from that PEP. A few are funny:

 1. Beautiful is better than ugly.

 2. Explicit is better than implicit.

 3. Simple is better than complex.

 4. Complex is better than complicated.

 5. Flat is better than nested.

 6. Sparse is better than dense.

 7. Readability counts.

Chapter 8 IntroduCtIon to hIgh- LeveL programmIng Languages

http://www.python.org/dev/peps/
http://www.python.org/dev/peps/pep-0001/
http://www.python.org/dev/peps/pep-0020/

122

 8. Special cases aren't special enough to break the

rules.

 9. However, practicality beats purity.

 10. Errors should never pass silently.

 11. Point 10 is so unless explicitly silenced.

 12. In the face of ambiguity, refuse the temptation

to guess.

 13. There should be one – and preferably only

one – obvious way to do it.

 14. However, that way may not be obvious at first unless

you're Dutch.

 15. Now is better than never.

 16. However, never is often better than “right” now.

 17. If the implementation is hard to explain, it's a bad idea.

 18. If the implementation is easy to explain, it may be a

good idea.

 19. Namespaces are one honking great idea – let's do

more of those!

These are general philosophical guidelines that influenced the

development of the Python programming language and continue to do so.

 Applications of Python
As we have seen that Python is a general-purpose programming language,

it has numerous applications in the following areas:

Chapter 8 IntroduCtIon to hIgh- LeveL programmIng Languages

123

 1. Web development

 2. GUI development

 3. Scientific and numerical computing

 4. Software development

 5. System administration

We can read case studies of Python for various projects at the

www.python.org/success- stories/.

 Python 3 on Debian Derivatives
Python 3 comes preinstalled on Debian and all the derivatives like Ubuntu

or the Raspberry Pi OS. So we do not have to install it separately. Both

the major Python versions, Python 2 and Python 3, come preinstalled

on Debian derivatives. Python 2 and Python 3’s executables are named

as python and python3, respectively. We must use the executable file

python3 for our demonstrations. To know the version and location of the

needed binary executable file, run the following commands one by one:

python3 -V

which python3

 Python Modes
Python has various modes. Let us discuss them one by one. Before we

get started with that discussion, we will see what IDLE is. IDLE stands

for Integrated Development and Learning Environment, and it is an IDE

(Integrated Development Environment) developed by the Python Software

Foundation for Python programming.

Chapter 8 IntroduCtIon to hIgh- LeveL programmIng Languages

http://www.python.org/success-stories/

124

All the Linux distributions may not come with IDLE preinstalled. We

can install it on Debian and its derivatives (including the Raspberry Pi OS)

by running the following commands in sequence:

sudo apt-get update --fix-missing

sudo apt-get install idle3 -y

Once installation is completed, we can find the IDLE in the menu (in

this case, the Raspberry Pi OS menu) as shown in Figure 8-1.

Figure 8-1. IDLE in the Raspberry Pi OS menu

We can also launch IDLE on Linux by running the following command:

idle

It will launch a window as shown in Figure 8-2.

Chapter 8 IntroduCtIon to hIgh- LeveL programmIng Languages

125

Before we proceed, we need to configure it for the comfort of our eyes.

We can change the font by clicking Options ➤ Configure IDLE as shown

in Figure 8-3.

Figure 8-2. IDLE window

Figure 8-3. Configure IDLE

Chapter 8 IntroduCtIon to hIgh- LeveL programmIng Languages

126

The following window opens (as shown in Figure 8-4) where you can

change the font and size of the characters in the IDLE.

Figure 8-4. IDLE configuration window

Now, let us discuss various modes of Python.

Chapter 8 IntroduCtIon to hIgh- LeveL programmIng Languages

127

 Interactive Mode
Python's interactive mode is a command line–type of shell which executes

the current statement and gives immediate feedback on the console. It

runs the previously fed statements in active memory. As new statements

are fed into and executed by the interpreter, the fed code is evaluated.

When we open the IDLE, we see a command-line prompt. It is nothing but

Python’s interactive mode. Let’s see a simple example. Let us type in the

customary Hello World program in the interactive prompt as follows:

print('Hello World!')

Press the Enter key to feed the line to the interpreter and execute it.

Figure 8-5 is a screenshot of the output.

Figure 8-5. Python interactive mode on IDLE

We can launch Python’s interactive mode from the command

prompt too. In the Linux command prompt (e.g., lxterminal), we must

run the command python3 to launch it. Figure 8-6 is a screenshot of the

interactive mode in the RPi OS command prompt (accessed remotely).

Chapter 8 IntroduCtIon to hIgh- LeveL programmIng Languages

128

 Script Mode
We can write a Python program and save it on the disk. Then we

can launch it in multiple ways. This is known as script mode. Let us

demonstrate it in IDLE. We can use any text editor to write the Python

program. However, as IDLE is an IDE, it is convenient to write and run

Python programs with IDLE. Let’s see that first. In the IDLE, click File ➤
New File. It will create a blank new file. Add the following code to that:

print('Hello World!')

Then save it with the name prog00.py on the disk as shown in

Figure 8-7.

Figure 8-6. Python interactive mode in the Linux command prompt

Chapter 8 IntroduCtIon to hIgh- LeveL programmIng Languages

129

In the menu, click Run ➤ Run Module. It will execute the program on

the IDLE’s prompt as shown in Figure 8-8.

Figure 8-7. A Python program in the IDLE code editor

Figure 8-8. A Python program under execution in the IDLE prompt

Chapter 8 IntroduCtIon to hIgh- LeveL programmIng Languages

130

We can even launch the program with Python’s interpreter in the

command prompt of the OS too. Open the command prompt of the OS and

navigate to the directory where the program is stored.

In the Linux terminal, we must run the following command in the

command prompt:

python3 prog00.py

Then the interpreter will run the program in the command prompt,

and the output (if any) will appear there.

In Linux, there is another way we can run the program without

explicitly using the interpreter. We must add the shebang line to the

beginning of the code file. For example, our code file looks like the

following:

#!/usr/bin/python3

print('Hello World!')

The first line is known as the shebang line. It tells the shell what

interpreter to use and its location. Then run the following command to

change the file permissions to make it executable for the owner as follows:

chmod 755 prog00.py

Then we can directly launch our Python program file like any other

executable with ./ as follows:

./prog00.py

The shell will execute the program and print the output in the terminal.

Note that this is applicable only for Unix-like systems as they support

executing programs with shebang.

Chapter 8 IntroduCtIon to hIgh- LeveL programmIng Languages

131

 Summary
In this chapter, we got started with C and C++ programming on Linux.

Then we explored the basics of the Python programming language. We

learned how to write basic Python programs and how to execute them in

various ways. We also learned various modes of the Python programming

language and how to launch it from the command prompt.

Now we are very comfortable with high-level programming languages

on the RPi OS (and Debian derivatives). We can write and execute

programs with C, C++, and Python 3. You may want to explore Java

programming on the Raspberry Pi OS. The RPi OS comes with Java and

related IDEs preinstalled.

In the next chapter, we will continue our wonderful journey of

programming with Python 3 and write programs for GPIO (General-Purpose

Input/Output) programming. We will use LEDs, resistors, breadboards, and

other electronic components for that. We will also have a brief introduction

to various types of buses in digital electronics.

Chapter 8 IntroduCtIon to hIgh- LeveL programmIng Languages

133© Ashwin Pajankar 2021
A. Pajankar, Practical Linux with Raspberry Pi OS,
https://doi.org/10.1007/978-1-4842-6510-9_9

CHAPTER 9

Programming with
RPi GPIO
In the last chapter, we got introduced to high-level programming

languages on Unix-like platforms. We learned to write programs with C

and C++ with the GCC compiler. We also learned how to write and execute

programs in the Python 3 programming language.

Continuing where we left off at the last chapter, in this chapter, we will

explore GPIO programming with RPi and Python 3. The following is the list

of topics we will explore in this chapter:

• GPIO pins

• Programming with GPIO

We will be comfortable with GPIO programming and usage of basic

electronic components with Raspberry Pi after this chapter.

General-Purpose Input/Output Pins
The RPi board has General-Purpose Input/Output header pins. All the

versions of the RPi board have this feature. This feature sets single-board

computers apart from other small computers. The GPIO pins give SBCs

the ability to directly interface with low-level electronic components and

various data transfer buses.

https://doi.org/10.1007/978-1-4842-6510-9_9#DOI

134

I am using an RPi 4 B board with 8 GB RAM for this chapter. It is the

most recent board in the RPi family. We can see the meanings of pins on

any RPi board by running the following RPi OS–specific command:

pinout

It will show us the layout of the board as shown in Figure 9-1.

Figure 9-1. Board layout of RPi 4 B

In the top-left part of the figure, we can see 40 GPIO pins. A few earlier

models of RPi had 26 pins. But they have long been out of production, so

we will not discuss them here. The programs we will demonstrate in this

Chapter 9 programming with rpi gpio

135

chapter are compatible with all the models of Pi. Figure 9-1 is the first part

of the output shown on the command line. If we scroll down, we can see

more. The last part of the output shows us the meanings of the pins as

shown in Figure 9-2.

Figure 9-2. Pinout of RPi 4 B

Chapter 9 programming with rpi gpio

136

This output shows us the power pins (5V, 3V3, and GND) and digital

IO pins. GND stands for ground and 3V3 means 3.3 volts. We can see that

there are two numbering schemes shown in the output. The physical

pin numbers (also known as board pin numbers) are mentioned in the

brackets, and BCM names are mentioned outside. For our convenience, we

will use board (physical) pin numbering in the programs that we will write.

We can get an idea about the orientation of the pins by comparing both

Figures 9-1 and 9-2. The pins are color-coded in both the figures.

Now, take a LED, a resistor, and a few jumper cables and prepare the

circuit shown in Figure 9-3.

Chapter 9 programming with rpi gpio

137

The LED will glow as long as the RPi board is on. This is because we are

connecting the anode of the LED (the longer pin) to the 3V3 pin and the

cathode to a GND pin through a resistor of 470 Ohms. This is the simplest

LED circuit we can make with this. You may want to try to connect the

Figure 9-3. Simple LED circuit

Chapter 9 programming with rpi gpio

138

anode of the LED to the 5V pin, and it will glow more. We have chosen the

resistor with the appropriate value so it will not burn the LED. In the next

section, we will see how we can write programs with GPIO.

 Programming with GPIO
In this section, we will see simple circuits with LEDs and pushbuttons. We

will use the Python 3 GPIO library for that. It comes preinstalled with the

RPi OS. If it is not preinstalled, then install it with the following command:

sudo apt-get install python3-rpi.gpio -y

Prepare a circuit as shown in Figure 9-4.

Chapter 9 programming with rpi gpio

139

Figure 9-4. Programmable LED circuit

We are connecting the anode of the LED to the pin which is physically

numbered as 8 in Figure 9-2. That is the only change we have from the

earlier circuit. Check out Listing 9-1.

Chapter 9 programming with rpi gpio

140

Listing 9-1. LED_Blink.py

from time import sleep

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BOARD)

GPIO.setwarnings(False)

GPIO.setup(8, GPIO.OUT, initial=GPIO.LOW)

while True:

 GPIO.output(8, GPIO.HIGH)

 sleep(1)

 GPIO.output(8, GPIO.LOW)

 sleep(1)

Let us discuss it in detail. The first two lines import required libraries.

Then we are instructing the RPi board to use the board (also called as, as

we have seen earlier, physical) pin numbering with the statement GPIO.

setmode(). Then we are disabling warnings. We are using the function

GPIO.setup() to set board pin 8 to output mode. We are also setting its

initial state as LOW. Then in an indefinite loop, we are alternately sending

HIGH and LOW signals to pin 8. The call to the function sleep() adds an

interval of 1 second between the statements. When pin 8 is HIGH, the

LED is on; and when pin 8 is LOW, the LED is off. Run the script with the

following command:

python3 LED_Blink.py

The LED will start blinking. To terminate the program, press Ctrl+C on

the keyboard.

This is the basic GPIO programming. We can use this creatively to

create various patterns of blinking LEDs if we use a breadboard to connect

multiple LEDs to the digital GPIO pins.

Chapter 9 programming with rpi gpio

141

 Summary
We have continued our journey of Python 3 programming in this chapter

and studied a program that makes a LED blink. We have also learned how

to build a basic circuit with a LED and a resistor. Raspberry Pi has many

more things to offer through its GPIO programming. You can explore this

vast topic further at your own convenience.

In the next chapter, we will study the GUI of the RPi OS in detail. We

will also see how to install various desktop environments for the RPi OS in

detail.

Chapter 9 programming with rpi gpio

143© Ashwin Pajankar 2021
A. Pajankar, Practical Linux with Raspberry Pi OS,
https://doi.org/10.1007/978-1-4842-6510-9_10

CHAPTER 10

Explore the
RPi OS GUI
In the last chapter, we explored Raspberry Pi GPIO in detail. We wrote

programs in Python to demonstrate the GPIO functionality of RPi. We also

had a brief overview of other types of buses in RPi.

This chapter will change the direction of our focus back to the

software part of the RPi OS. In this chapter, we will explore various desktop

environments and GUI utilities on the RPi OS. The following is the list of

topics covered in this chapter:

• GUI Utilities on the RPi OS

• Other Desktop Environments

After this chapter, we will be very comfortable various GUI

environments and utilities on the RPi OS.

 GUI Utilities on the RPi OS
There are many GUI utilities on the RPi OS. They are grouped as per their

usage. Figure 10-1 shows the RPi OS menu.

https://doi.org/10.1007/978-1-4842-6510-9_10#DOI

144

Let us have an overview of the menu items. In the Programming

section, all the utilities for programming can be found. The RPi OS comes

with the IDEs for Java (BlueJ and Greenfoot), Python (Thonny, Geany,

Mu), Scratch, Wolfram, and Mathematica. We have also seen how to install

IDLE for Python 3 earlier. You can find that here. There are interesting

utilities like Node-RED, Sense HAT Emulator, and Sonic Pi. It is worth

exploring them.

The Education section has SmartSim which is a software for learning

digital electronics.

Figure 10-1. RPi OS menu

Chapter 10 explore the rpi oS GUi

145

The Office section is very handy for people who want to use office

applications like a word processor and spreadsheet.

The Internet section has a web browser, VNC, and an email client.

The Sound & Video section has the VLC media player. The Graphics

section has an image viewer. You also may want to play a few games in the

Games section.

The next four sections have various tools to manage the RPi and a

few useful programs. I recommend exploring them on your own. The

Run section, when clicked, brings up a window to launch the programs

by typing in their names. We had seen the demonstration in Chapter 1. If

you know the names of the programs, they can be launched from here by

typing in their names. We had also seen the last option Logout already.

This is all about the modified LXDE desktop environment. In the next

section, we will explore other desktop environments for the RPi OS.

 Other Desktop Environments
Let us install other desktop environments one by one.

 XFCE
Installing this one is easy. Just run the following commands one by one in

sequence:

sudo apt-get update --fix-missing

sudo apt-get install xfce4 -y

sudo apt-get install slim -y

Now, when we reboot, we are presented with a screen as shown in

Figure 10-2.

Chapter 10 explore the rpi oS GUi

146

We need to press the F1 key on the keyboard to choose the desktop

environment. If you press F1 once, it shows Session: Default Xsession as

shown in Figure 10-2. This is the default modified LXDE that comes with

the RPi OS. We have seen this already.

The next option comes up here when we press F1 again. It reads Xfce
Session. If we press F1 again, we see Session: Openbox; and after pressing

F1 one more time, it shows LXDE. Now if we press F1 again, it cycles us

back through the first option. So choose the Xfce Session, and key in

the username and password (I have not changed the default username/

password combination of pi/raspberry).

After login, it shows a nice XFCE desktop like the one shown in

Figure 10-3.

Figure 10-2. Login screen

Chapter 10 explore the rpi oS GUi

147

You can explore it. It is very much user-friendly.

Let us reboot and this time choose the option Session: Openbox.

Log in into that, and you will find a blank desktop environment. This is

because Openbox is a free, stacking window manager for the X Window

System. We can right-click and see menu options. You can explore this

style of desktop further. You can see the option to exit in the menu shown

after right-clicking. Choose that to come back to the login screen. And now

choose Session: LXDE. It will also show a very nice, pleasant, and visually

appealing desktop environment as shown in Figure 10-4.

This is the unmodified LXDE desktop environment. The menu is not

labeled and can be difficult to find at first. It is at the bottom-left corner as

shown in Figure 10-4.

Figure 10-3. XFCE desktop

Chapter 10 explore the rpi oS GUi

148

 KDE Plasma
KDE is an international community for developing free software for Unix-

like operating systems. One of the software developed by KDE is the KDE

Plasma desktop environment. Let us install it on our Pi. Open the terminal

program of your current desktop environment and run the following

commands:

sudo apt-get update --fix-missing

sudo apt-get dist-upgrade -y

sudo apt-get install kde-full -y

Figure 10-4. LXDE desktop

Chapter 10 explore the rpi oS GUi

149

We can see the other installation options at https://wiki.debian.

org/KDE. During the installation, you will be prompted to choose a desktop

environment. Choose slim. Once the installation is completed, reboot

the system. We will find the KDE Plasma as an option in the login screen

(Figure 10-5).

Figure 10-5. KDE Plasma desktop

KDE Plasma, XFCE, and LXDE environments will come with their own

set of utilities. If you choose any of the desktop environments, you will find

all the utilities listed under the menu. Feel free to explore the utilities on

your own.

Chapter 10 explore the rpi oS GUi

https://wiki.debian.org/KDE
https://wiki.debian.org/KDE

150

 Summary
In this chapter, we learned various important utilities. We also learned to

install other desktop environments on the RPi OS for RPi. For practice, as

suggested earlier, work with all the desktop environments and explore the

utilities on your own.

Next, we will have the Appendix of this book, which contains assorted

topics with tips and tricks related to the Raspberry Pi OS.

Chapter 10 explore the rpi oS GUi

151© Ashwin Pajankar 2021
A. Pajankar, Practical Linux with Raspberry Pi OS,
https://doi.org/10.1007/978-1-4842-6510-9

 APPENDIX

Additional Tools
In the last chapter, we explored various GUI tools that come with the RPi

OS and other desktop environments. In this Appendix, we’ll learn about

Raspberry Pi Imager and other related topics.

 Raspberry Pi Imager
Raspberry Pi Imager is a versatile software. We can use it for other

purposes too. If you read a RPi OS–formatted card with Windows or any

other OS, then you will find that it has two partitions. The first partition

is the boot partition (it is 256 MB usually) which stores the config.txt file,

and the other partition has the rest of the Linux filesystem. We cannot use

the card for other uses (Android phone or video camera) with the RPi OS

or any other OS for SBCs on it. For that, we have to format the card. RPi

Imager provides an option for that. When we click CHOOSE OS, we can

see different options as shown in Figure A-1.

https://doi.org/10.1007/978-1-4842-6510-9#DOI

152

Choose the option Erase. Then choose the SD card in the main screen

and finally click the button WRITE. It will format the card as a FAT32

storage device. Now, we can reuse it for any other purpose.

 Additional Utilities
We can also use utilities like the built-in Windows Disk Management or

SD Card Formatter (www.sdcard.org/downloads/formatter/) to erase the

partitions made by RPi OS.

We can also write operating systems other than the RPi OS to the

microSD card. We can see the list of other operating systems in the same

menu (CHOOSE OS). Raspberry Pi supports more operating systems than

the one mentioned here.

Figure A-1. Erase option

Appendix AdditionAl tools

http://www.sdcard.org/downloads/formatter/

153

We can download the OS images from www.raspberrypi.org/

downloads/ and then choose the option Use custom to write the image

files to the microSD card. These image files have the *.img extension.

 Manjaro Linux
We can install Manjaro Linux with the KDE Plasma desktop from https://

manjaro.org/downloads/arm/raspberry-pi-4/arm8-raspberry-pi-4-

kde-plasma/.

 FreeBSD
We can also install FreeBSD from https://wiki.freebsd.org/action/

show/arm/Raspberry%20Pi.

 Additional OSs
Many other operating system projects create images for RPi. Most of these

images will be zipped and can be extracted using a free utility called 7-Zip.

Many of these OS projects come with torrent files, and we can

download the image files by opening these torrent files with torrent

software like BitTorrent or uTorrent. We can also directly download

the image file, but I usually download it with a download manager like

Download Accelerator Plus (www.speedbit.com/). In case Internet

connectivity is lost, torrent and download managers save the checkpoint,

so we can resume the download when the connectivity is restored.

Appendix AdditionAl tools

http://www.raspberrypi.org/downloads/
http://www.raspberrypi.org/downloads/
https://manjaro.org/downloads/arm/raspberry-pi-4/arm8-raspberry-pi-4-kde-plasma/
https://manjaro.org/downloads/arm/raspberry-pi-4/arm8-raspberry-pi-4-kde-plasma/
https://manjaro.org/downloads/arm/raspberry-pi-4/arm8-raspberry-pi-4-kde-plasma/
https://wiki.freebsd.org/action/show/arm/Raspberry Pi
https://wiki.freebsd.org/action/show/arm/Raspberry Pi
http://www.speedbit.com/

155© Ashwin Pajankar 2021
A. Pajankar, Practical Linux with Raspberry Pi OS,
https://doi.org/10.1007/978-1-4842-6510-9

Index

A
Advanced Package Tool (APT), 55
Absolute path, 54–56, 73

B
Bash shell, 38, 82, 96
Basic Input/Output

System (BIOS), 16
BitTorrent/uTorrent, 153
Boot partition, 151

C
cd command, 56
Centrum Wiskunde &

Informatica (CWI), 120
command history, 78, 79
Command-Line Interface (CLI), 36
Command prompt, 38, 39
Comma-separated value (CSV), 74
Control operators, 75
Crontab, 114, 115

D
Debian, 6, 35, 55, 67
df command, 84

Directories, 41, 42
case sensitive, 64, 65
create and

remove, 62–64
Dynamic Host Configuration

Protocol (DHCP), 29

E
echo command, 75

F
Filename globbing, 77
File operations, 73
File Transfer Window, 46
FreeBSD, 153

G
General Purpose Input

Output (GPIO), 131
GPIO.setmode(), 140
GPIO.setup(), 140
Graphical User Interface

(GUI), 36

https://doi.org/10.1007/978-1-4842-6510-9#DOI

156

H
Hidden items, 60
High-level programming languages

C and C++, 118, 119
python++, 120

I, J, K
I/O redirection

LUnix-like operating systems, 111
stderr, 113
stdin, 112
stdout, 112

Is command, 57–59

L
Lightweight X11 Desktop

Environment (LXDE), 36
Leafpad, 62
Linux and distributions, 5, 6
LINUX commands, 83–86
Linux filesystem, 39

M
Manjaro Linux, 153
microSD card, 152

N
nano text editor, 61
Network-related commands, 70, 71
nohup, 94

O
Operating system shell, 36
OS setup

HDMI converters, 12
HDMI male pin, 11
microSD card, 10
preparing SD card

boot, 16
changes, 16, 17
CHOOSE OS, 14, 15
config.txt., 16
Raspberry Pi Imager, 14
writing OS, 16

RPi board, 17, 18
SD card converter, 10
SD card reader, 13
types of HDMI male pin, 11, 12
USB-C male pin, 7, 8
USB keyboard, 8, 9
USB OTG converter, 9
VGA monitor, 13

P, Q
Present working directory (pwd),

54, 55
ping command, 72
Piping, 78
Process ID (PID), 76
Python

applications, 122
definition, 120
enhancement proposols, 121
history, 120

Index

157

IDLE, 124–126
interactive mode, 127, 128
philosophy, 121, 122
script mode, 128–130

Python 3, Debian derivatives, 123
Python Enhancement

Proposals (PEPs), 121

R
Raspberry Pi

4 Model B
components, 4, 5
photograph, 4
specifications, 3

OS, 6
Raspberry Pi Imager, 151
Raspberry Pi OS, 36

Bluetooth symbol, 37
desktop, 37
File Explorer, 37
lxterminal, 37
WiFi symbol, 37

raspi-config utility, 68
Relative path, 54
Remote desktop, 50
rm command, 63
RPi board

booting up, 17, 18
configuration

change password, 20
country/language, 19
interfaces, 25, 26
localisation, 27, 28

message, 29
OS menu, 23, 24
performance, 26, 27
set up completion, 23
set up screen, 20, 21
shutdown options, 28
update software, 22
WiFi, 21, 22
window, 18, 19, 24, 25

internet
accessories, 30
active client list, 33
backup, 32
ifconfig command, 33
Linux commands, 32
lxterminal utility, 30
lxterminal screenshot, 31
nano editor, 32
network interfaces, 32
network-related

information, 32
plaintext editor, 32
restart, 33
Run window, 30, 31
USB OTG cable, 30
USB WiFi dongle, 29, 30

RPi GPIO
pins, 133, 135–137
programming, 138–140

RPi OS GUI
desktop environment

KDE plasma, 148, 149
XFCE, 145–148

utilities, 143, 144

Index

158

S
shebang or shebang, 96
Shell/environment variables, 81, 82
Shell scripts

command-line
arguments, 103

compare strings, 106–108
expressions, 97, 98
file operations, 108–110
functions, 103, 104
if statement, 99–101
loops, 104–106
lxterminal, 95
nohup, 94, 95
switch case, 101
Unix file permissions, 92–94
user input, 96
variable length, 102

Single-board computers (SBCs), 2
SSH connection window, 44, 45
sudo command, 69
Superuser, 69

T
touch command, 60
tree command, 56
tree utility, 55

U
Unix commands, 57
Unix-like operating

systems, 40
UNIX tools, 86–88

V
vim editor, 61
VNC viewer connection

window, 48
VNC viewer window, 47

W, X, Y, Z
wget command, 72

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Raspberry Pi
	Single-Board Computers
	Raspberry Pi
	Linux and Distributions
	Raspberry Pi OS

	Raspberry Pi OS Setup
	Preparing the SD Card Manually
	Booting Up the Pi Board for the First Time

	Configuring the RPi Board
	Connecting Various RPi Board Models to the Internet
	Summary

	Chapter 2: Getting Ready
	Operating System Shell
	Raspberry Pi OS GUI
	The Command Prompt
	Updating the RPi OS

	Linux Filesystem
	Remotely Accessing the RPi
	Summary

	Chapter 3: Directory Commands and Text Editors
	Absolute and Relative Paths
	Commands: pwd, tree, and cd
	Command: ls
	Command: touch
	Various Text Editors
	Create and Delete Directories
	Case-Sensitive Names of Directories and Files
	Summary

	Chapter 4: More Commands
	Configuring the RPi Board
	What Is sudo?

	Getting Help on Commands
	Network-Related Commands
	Commands: File Operations
	Printing a String
	Control Operators
	Filename Globbing
	Command: History
	Pipes
	Summary

	Chapter 5: Useful Unix Commands and Tools
	Shell and Environment Variables
	Useful Linux Commands
	Useful Unix Tools
	Summary

	Chapter 6: Shell Scripting
	Unix File Permissions
	Command: nohup
	Beginning Shell Scripting
	User Input
	Expressions in the Shell
	If Statement
	Switch Case
	Length of a Shell Variable
	Command-Line Arguments
	Function
	Loops in the Shell
	Comparing Strings
	File Operations
	Summary

	Chapter 7: I/O Redirection and Cron
	I/O Redirection
	stdin
	stdout
	Stderr

	Crontab
	Summary

	Chapter 8: Introduction to High-Level Programming Languages
	C and C++ Programming
	Python Programming Language
	History of the Python Programming Language
	Python Enhancement Proposals
	Philosophy of the Python Programming Language

	Applications of Python

	Python 3 on Debian Derivatives
	Python Modes
	Interactive Mode
	Script Mode

	Summary

	Chapter 9: Programming with RPi GPIO
	General-Purpose Input/Output Pins
	Programming with GPIO
	Summary

	Chapter 10: Explore the RPi OS GUI
	GUI Utilities on the RPi OS
	Other Desktop Environments
	XFCE
	KDE Plasma

	Summary

	Appendix: Additional Tools
	Raspberry Pi Imager
	Additional Utilities
	Manjaro Linux
	FreeBSD
	Additional OSs

	Index

